Poisson Distribution

Purpose

To verify the statistical nature of counting experiments such as radioactive decay, and to extract the parameters of the corresponding statistical distributions.

Background

This is a continuation of the experiment "Introduction to Geiger Muller Tube", but is computer aided. See the attached Leybold page.

Procedure

- 1. Arrange the experimental set up as shown, and get familiar with the CASSY Lab program.
- 2. Adjust the distance between the radioactive source and the GM tube so that a convenient rate of about 5 counts per second is obtained.
- 3. In the CASSY Lab program, select x-axis = RA1 (count rate in input A), y-axis = HA1 (frequency in A) with bars and n = 1000 for frequency distribution. Double click on RA1 and set gate time (Δt) = 1s. Start measuring by clicking on the clock icon or F9.
- 4. Save and print the data and the histogram at the end of the measurements.
- 5. Repeat steps 3 & 4 for n = 500 and $\Delta t = 10$ s.
- 6. Decrease the distance between the source and the detector so that about 50 counts per second is obtained.
- 7. Repeat steps 3, 4 and 5.

Analysis

- Fit your low-count rate data with a Poisson distribution and extract its parameter
 μ using any data fitting software.
- 2. Fit your high-count rate data with a Gaussian distribution and extract its parameters μ and σ .
- 3. What is the effect of increased gate time?

Poisson distribution

Load example

Experiment description

The number x of decay events of a radioactive preparation over a time interval Δt is not constant. A large number of individual measurements can be represented as a frequency distribution H(x) scattered around the mean value μ . By comparing this frequency distribution with the Poisson distribution, we can confirm that x shows a Poisson distribution around the mean value μ .

Equipment list

1	Sensor-CASSY	524 010
1	CASSY Lab	524 200
1	GM box	524 033
1	End-window counter	559 01
1	Set of radioactive preparations	559 83
	Large clip plug	591 21
	Small clip plug	590 02
	, , ,	532 16
2	Bases	300 11
1	PC with Windows 95/98/NT	

Experiment setup (see drawing)

The end-window counter is connected to the GM box at input A of Sensor-CASSY. Handle the counter tube and the preparation with care.

Carrying out the experiment

Load settings

- If necessary, modify the gate time Δt (Settings RA1).
- Preset the measurement if necessary. Enter the number of measurements as the measuring condition in the Measuring Parameters dialog opened with F5 (e.g. n < 1000 for 1000 individual measurements).
- Start the measurement series with F9, and stop it again with F9 after recording the series.

Evaluation

In the evaluation, you can compare the measured frequency distribution with a Poisson distribution. For higher mean values μ the Poisson distribution develops into a Gaussian distribution.