Suggested problems

Chapter 06

The quiz questions will be same or very similar to the following text-book problems. Refer to the course website for the latest version of this document.
You are encouraged to seek the help of your instructor during his office hours.
5. A 2.5 kg block is initially at rest on a horizontal surface. A horizontal force \vec{F} of magnitude 6.0 N and a vertical force \vec{P} are then applied to the block (Fig. 6-17).The coefficients of friction

Fig. 6-17 Problem 5. for the block and surface are $\mu_{s}=0.40$ and $\mu_{k}=0.25$. Determine the magnitude of the frictional force acting on the block if the magnitude of \vec{P} is (a) 8.0 N , (b) 10 N , and (c) 12 N ?

Answer: (a) 6.0 N ; (b) 6.0 N ; (c) 6.0 N
9. A 3.5 kg block is pushed along a horizontal floor by a force \vec{F} of magnitude 15 N at an angle $\theta=40^{\circ}$ with the horizontal (Fig. 6-19). The coefficient of kinetic friction between the block and the floor is

Fig. 6-19
Problems 9 and 32 . 0.25 . Calculate the magnitudes of (a) the frictional force on the block from the floor and (b) the block's acceleration.

Answer: (a) 11 N ; (b) $0.14 \mathrm{~m} / \mathrm{s}^{2}$
17. In Fig. 6-24, a force \vec{P} acts on a block weighing 45 N . The block is initially at rest on a plane inclined at angle $\theta=15^{\circ}$ to the horizontal. The positive direction of the x axis is up the plane. The coefficients of friction between block and plane are $\mu_{\mathrm{s}}=0.50$ and $\mu_{\mathrm{k}}=0.34$. In unit-vector notation,

Fig. 6-24 Problem 17. what is the frictional force on the block from the plane when $\overrightarrow{\mathrm{P}}$ is (a) (-5.0 N) $\hat{1}$, (b) (-8.0 N)î , and (c) (-15 N)î?

Answer: (a) (17 N$) \hat{\imath} ;$ (b) $(20 \mathrm{~N}) \hat{\imath}$ (c) $(15 \mathrm{~N}) \hat{\imath}$
19. A 12 N horizontal force \vec{F} pushes a block weighing 5.0 N against a vertical wall (Fig. 6-26).The coefficient of static friction between the wall and the block is 0.60 , and the coefficient of kinetic friction is
 0.40 . Assume that the block is not moving initially. (a) Will the block Fig. 6.26 Problem 19. move? (b) In unit-vector notation, what is the force on the block from the wall?

Answer: (a) no; (b) $(-12 N) \hat{\imath}+(5.0 N) \hat{\imath}$
70. Figure 6-53 shows a conical pendulum, in which the bob (the small object at the lower end of the cord) moves in a horizontal circle at constant speed. (The cord sweeps out a cone as the bob rotates.) The bob has a mass of 0.040 kg , the string has length $\mathrm{L}=0.90 \mathrm{~m}$ and negligible mass, and the bob follows a circular path of circumference 0.94 m . What are (a) the tension in the string and (b) the period of the
 motion?

Answer: (a) 0.40 N (b) 1.85 s

