Q1.
The body mass index (BMI) of a person is calculated in SI units using the formula:

$$
\text { BMI }=\text { weight }(\mathrm{kg}) / \text { height }^{2}\left(\mathrm{~m}^{2}\right)
$$

Find the BMI of a person (in SI units) whose weight is 160 lb (pound) and height is 70.0 inches. $(1.00$ inch $=2.54 \mathrm{~cm}, 1.00 \mathrm{lb}=454 \mathrm{~g})$.
A) 23.0
B) 16.7
C) 5.45
D) 35.0
E) 45.2

Q2.

It is observed that the frequency $\mathrm{f}\left(\mathrm{s}^{-1}\right)$ of oscillations of a string depends upon its mass (M), length (L) and tension $\mathrm{P}\left(\mathrm{kg} . \mathrm{m} / \mathrm{s}^{2}\right)$ as follows:

$$
\mathrm{f}=\mathrm{C} \mathrm{P}^{\mathrm{a}} \mathrm{M}^{\mathrm{b}} \mathrm{~L}^{\mathrm{c}}
$$

where C is a dimensionless constant. Find the values of the constants a, b, and c (in this order)
A) $1 / 2,-1 / 2,-1 / 2$
B) $1 / 2,1 / 2,-1 / 2$
C) $-1 / 2,1 / 2,1 / 2$
D) $1 / 2,-1 / 2,1 / 2$
E) $-1 / 2,-1 / 2,1 / 2$

Q3.
The position versus time for a certain particle moving along the x -axis is shown in Figure 1. The average velocity in the time interval 4.0 s to 7.0 s is:

A) $-1.7 \mathrm{~m} / \mathrm{s}$
B) Zero
C) $1.7 \mathrm{~m} / \mathrm{s}$
D) $0.80 \mathrm{~m} / \mathrm{s}$
E) $-0.80 \mathrm{~m} / \mathrm{s}$

Q4.

A stone is thrown outward from point A at the top of a 58.8 m high cliff with an upward velocity component of $19.6 \mathrm{~m} / \mathrm{s}$ (see Figure 2). Assume that it lands on the ground, at point B , below the cliff, and that the ground below the cliff is flat. How long was the stone in the air? [Neglect the air resistance].

A) 6.00 s
B) 5.00 s
C) 4.00 s
D) 7.00 s
E) 8.00 s

Q5.

Figure 3 illustrates the motion of a particle starting from rest and moving along an x -axis with a constant acceleration. The figure's vertical scaling is set by $x_{\mathrm{s}}=12 \mathrm{~m}$. The particle's acceleration is

A) $2.0 \mathrm{~m} / \mathrm{s}^{2}$
B) $0.50 \mathrm{~m} / \mathrm{s}^{2}$
C) $-6.0 \mathrm{~m} / \mathrm{s}^{2}$
D) $6.0 \mathrm{~m} / \mathrm{s}^{2}$
E) $-3.0 \mathrm{~m} / \mathrm{s}^{2}$

Q6.
A ball is thrown directly downward from a height of 30.0 m . It takes 1.79 s to reach the ground. Find the magnitude of the initial velocity.
A) $7.99 \mathrm{~m} / \mathrm{s}$
B) $1.66 \mathrm{~m} / \mathrm{s}$
C) $10.0 \mathrm{~m} / \mathrm{s}$
D) $2.00 \mathrm{~m} / \mathrm{s}$
E) $3.75 \mathrm{~m} / \mathrm{s}$

Q7.
A man is running in a straight line (along the x-axis). The graph in Figure 4 shows the man's velocity as a function of time. During the first 12.0 s , the total distance traveled is

A) 46.0 m
B) Zero
C) 40.0 m
D) 8.00 m
E) 72.0 m

Q8.
If $\overrightarrow{\mathrm{A}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}$ and $\overrightarrow{\mathrm{B}}=3.0 \hat{\mathrm{i}}+2.0 \hat{\mathrm{j}}$, what is the angle between the two vectors? $[\hat{\mathrm{i}}, \hat{\mathrm{j}}$ and $\hat{\mathrm{k}}$ are the unit vectors in the x, y and z -direction, respectively]
A) 79°
B) 41°
C) 90°
D) 19°
E) 26°

Q9.
A boat is sailing due East at a speed of $6.0 \mathrm{~m} / \mathrm{s}$ relative to the water of a river. The water is moving due south at a speed of $5.0 \mathrm{~m} / \mathrm{s}$ relative to the ground. What is the velocity of the boat relative to the ground in unit vectors? See Figure 5. [\hat{i}, \hat{j} and \hat{k} are the unit vectors in the x, y and z -direction, respectively]

(North)

j
 $\mathrm{T}_{\rightarrow \mathrm{i}}$ (East)

A) $\overrightarrow{\mathrm{V}}_{\mathrm{bg}}=6.0 \hat{\mathrm{i}}-5.0 \hat{\mathrm{j}}$
B) $\overrightarrow{\mathrm{V}}_{\mathrm{bg}}=3.0 \hat{\mathrm{i}}-4.0 \hat{\mathrm{j}}$
C) $\overrightarrow{\mathrm{V}}_{\mathrm{bg}}=8.0 \hat{\mathrm{i}}-5.0 \hat{\mathrm{j}}$
D) $\overrightarrow{\mathrm{V}}_{\text {bg }}=6.0 \hat{\mathrm{i}}-8.0 \hat{\mathrm{j}}$
E) $\overrightarrow{\mathrm{V}}_{\text {bg }}=5.0 \hat{\mathrm{i}}-4.0 \hat{\mathrm{j}}$

Phys101	First Major-151	Zero Version
Coordinator: Dr. I. Nasser	Monday, September 14, 2015	Page: 4

Q10.
A vector in the $x y$ plane has a magnitude of 25 and the magnitude of its x-component is 12 . The angle this vector makes with the positive y-axis is:
A) 64°
B) 29°
C) 61°
D) 24°
E) 41°

Q11.

The vectors \mathbf{X}, \mathbf{Y}, and \mathbf{Z} are related by $\mathbf{Z}-\mathbf{Y}+\mathbf{X}=\mathbf{0}$. Which diagram in Figure $\mathbf{6}$ illustrates this relationship?

A) Figure 6-1
B) Figure 6-2
C) Figure 6-3
D) Figure 6-4
E) Figure 6-5

Q12.
The result of $(\hat{\mathbf{j}} \times \hat{\mathrm{k}}) \times(\hat{\mathrm{k}} \times \hat{\mathrm{i}})$ is:
[\hat{i}, \hat{j} and \hat{k} are the unit vectors in the x, y and z-direction, respectively]
A) \hat{k}
B) 0
C) \hat{i}
D) \hat{j}
E) $-\hat{k}$

Phys101	First Major-151	Zero Version
Coordinator: Dr. I. Nasser	Monday, September 14, 2015	Page: 5

Q13.
A particle undergoes a displacement, $\Delta \overrightarrow{\mathrm{r}}=2.0 \hat{\mathrm{i}}-3.0 \hat{\mathrm{j}}+6.0 \hat{\mathrm{k}}$, ending with the position vector, $\overrightarrow{\mathrm{r}}=3.0 \hat{\mathrm{j}}-4.0 \hat{\mathrm{k}}$ in meters. What was the particle's initial position vector? [$\hat{\mathrm{i}}, \hat{\mathrm{j}}$ and $\hat{\mathrm{k}}$ are the unit vectors in the x, y and z -direction, respectively]
A) $-2.0 \hat{\mathrm{i}}+6.0 \hat{\mathrm{j}}-10 \hat{\mathrm{k}}$
B) $6.0 \hat{\mathrm{j}}+10 \hat{\mathrm{k}}$
C) $2.0 \hat{i}+3.0 \hat{k}$
D) $2.0 \hat{\mathrm{k}}$
E) $-2.0 \hat{i}+3.0 \hat{j}-9.0 \hat{k}$

Q14.

A stone is tied to a string and rotated in a circle of radius 4 m at a constant speed. If the magnitude of its acceleration is $16 \mathrm{~m} / \mathrm{s}^{2}$, what is the period of the motion?
A) $\pi \mathrm{s}$
B) $2 \pi \mathrm{~s}$
C) $3 \pi \mathrm{~s}$
D) $\pi / 2 \mathrm{~s}$
E) $4 \pi \mathrm{~s}$

Q15.
The minimum speed of a projectile during the whole flight is $5.0 \mathrm{~m} / \mathrm{s}$. It takes 4.0 s to reach its horizontal range. What is the range of the projectile?
A) 20 m
B) 30 m
C) 40 m
D) 50 m
E) 10 m

