
ORTEC ®

Experiment 2
Geiger Counting

Purpose

The purpose of this experiment is to familiarize the student with the Geiger-Mueller counter.1 This counter is a widely used pulse-
counting instrument for X-ray, gamma-ray, beta-particle and alpha-particle detection. It uses gas amplification, which makes it
remarkably sensitive, while the simple construction renders it relatively inexpensive. The experiments that are designed to accomplish
this purpose deal with the operating plateau of the Geiger tube, resolving-time corrections, half-life determinations, and the basic
nuclear counting principles. 

Description

Basically, the Geiger counter consists of two electrodes with a gas at reduced pressure between the electrodes. The outer electrode is
usually a cylinder, while the inner (positive) electrode is a thin wire positioned in the center of the cylinder. The voltage between these
two electrodes is maintained at such a value that virtually any ionizing particle entering the Geiger tube will cause a comprehensive
electrical avalanche within the tube. This discharge is so massive that the output pulse has essentially the same amplitude, regardless
of the type of radiation that caused it. Thus, the Geiger counter cannot measure the energy of the impinging radiation, and functions
only as a means of counting the number of photons or charged particles that were detected. The voltage pulse from the avalanche is
typically greater than a few Volts in amplitude. These
pulses are large enough that they can be counted in an
ORTEC 996 Timer and Counter without amplification.
However, pulse inversion is necessary (Fig. 2.1) because
the Geiger counter output is a negative pulse, whereas
the 996 Timer and Counter requires a positive pulse at its
POSitive INput.

The Geiger tube used in this experiment is called an end-
window tube because it has a thin window at one end
through which the ionizing radiation enters. In this
experiment the properties of the Geiger counter will be
studied, and several fundamental measurements will be
made. For more information on the Geiger counter see
the chapter on Geiger-Mueller Counters in reference 1. 

1The traditional name of this detector includes the names of the two inventors of the device. For convenience, the name is often shortened to Geiger
Counter or Geiger Tube.

Fig. 2.1.  Electronics for Geiger Counting.

Equipment Required

• 556 High Voltage Bias Supply 

• 4001A/4002D NIM Bin and Power Supply 

• 996 Timer and Counter 

• C-36-12 12-ft. (3.7-m) 75-Ω RG-59A/U Coaxial Cable with two

SHV female plugs

• Two C-24-4 4-ft. (1.2 m) 93-Ω RG-62A/U Coaxial Cables with

BNC plugs

• C-29 BNC Tee Connector 

• GP35 or GP35HP End-Window Geiger-Mueller Tube with Stand
providing 6 counting levels 

• GPI Pulse Inverter (to convert the negative G10-M tube signal to
a positive pulse for the 996 input).

• TDS3032C 300 MHz, 2-Channel Digital Oscilloscope.

• Two RAS20 Absorber Foil Kits, each containing at least 4 lead
absorbers from 1100 to 7400 mg/cm2

• Co60S* Sealed Solid Disk Gamma Ray Source: ~1 µCi of 60Co 

• RSS2* Resolving Time Set Split Source Tl-204. 

• Small, flat-blade screwdriver for tuning screwdriver-adjustable
controls

*Sources are available direct from supplier. See the ORTEC website at www.ortec-online.com/Service-Support/Library/Experiments-
Radioactive-Source-Suppliers.aspx
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EXPERIMENT 2.1. Operating Plateau for the Geiger Tube

Purpose

The purpose of this experiment is to determine the voltage plateau for
the Geiger tube and to establish a reasonable operating point for the
tube. Fig. 2.2 shows a counts-vs.-voltage curve for a typical Geiger tube
that has an operating point in the vicinity of 950 V. 

The region between R1 and R2, corresponding to operating voltages V1
and V2, is called the Geiger region. Voltages >V2 in Fig. 2.2 cause a
continuous discharge in the tube and should be avoided, because a
continuous discharge will definitely shorten the life of the tube. 

Procedure 

1. Set up the electronics as shown in Fig. 2.1. Ensure that all power is
turned off. 

2. On the 556 High Voltage Power Supply, set all three of the front-
panel Voltage controls to their minimum value. On the rear panel,
confirm that the POSitive POLARITY has been selected, and the
CONTROL switch is set to INTernal.

3. Connect the cable with the MHV connector from the Geiger tube to
the MHV connector labeled “GM Tube” on the GM Pulse Inverter
box. Using the coaxial cable with SHV plugs, connect the high
voltage OUTPUT on the rear panel of the 556 High Voltage Power
Supply to the SHV connector labeled “HIGH VOLTAGE” on the GM Pulse Inverter box. 

4. Using an RG-62A/U coaxial cable with BNC plugs, connect the OUTPUT on the GM Pulse Inverter box to a BNC Tee on the
Channel 1 input of the oscilloscope. Connect the other side of the Tee to the POSitive INput on the 996 Timer and Counter using
another RG-62A/U coaxial cable.

5. Set the oscilloscope to display the Channel 1 input on a vertical scale of 2 Volts per major division and a horizontal scale of 10 µs
per major division. Set the triggering mode to Auto, and select the Channel 1 input as the triggering source. Position the ground
trace near the bottom of the display, and set the input coupling to DC. This setup should allow the oscilloscope to display the +4-V
logic pulse from the GM Pulse Inverter.

6. Turn on power to the Bin and Power Supply and turn on power to the 556 High Voltage Power Supply.

7. On the 996 turn the THRESHold ADJustment screwdriver control counterclockwise until it clicks at its minimum setting. Next, turn
the potentiometer clockwise 4.0 turns. This should set the POSitive INput threshold at +1.6 Volts. (The screwdriver adjustment
operates a 25-turn potentiometer to set the POSitive INput threshold between +100 mV and +9.5 V.) 

8. On the 996, set the TIME BASE to 0.01 MINutes. Select the PRESET time display and choose M = 3, N = 0 and P = 2. That
chooses a counting time of 30 minutes. 

9. Set the 996 DISPLAY to COUNTS.

10. Place the two halves of the split beta source from the source kit at a distance of ~2 cm from the window of the Geiger tube.
Depending on the manufacturer, this may be either a 90Sr/90Y or a 204Tl radioactive source.2 If the active source is deposited behind
a thin window on one side of each plastic half-disk, make sure that the active sides are facing the end window on the Geiger
counter.

11. Gradually increase the (positive) high voltage on the 556 in steps no larger than 50 V until the 996 counter just begins registering
counts and the 4-V logic pulse shows up on the oscilloscope input. This point is called the starting voltage in Fig. 2.2. Starting
voltages are rarely >900 V and can be as low as 250 V. If the counts begin advancing on the 996 Timer and Counter, but the
pulse does not show up on the oscilloscope, adjust the oscilloscope triggering. If the pulse shows up on the oscilloscope, but the
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2 90Sr has a half-life of 28 years, and decays to 90Y by β– emission, with an endpoint energy of 0.546 MeV. The daughter nucleus, 90Y, has a 64-hr. half-

life, and decays to the stable nucleus 90Zr more than 99% of the time by β– emission, with an endpoint energy of 2.27 MeV. 204Tl has a half-life of 3.8

years, and decays to the stable nucleus 204Pb by β – decay, with an endpoint energy of 0.766 MeV. For more details consult reference 7.

Fig. 2.2.  Geiger Tube Plateau Determination



3

Experiment 2
Geiger Counting

996 does not begin counting, check the setup of the 996. Basically, the oscilloscope is being used to check that the electronics are
operating properly. Once proper triggering has been established, the triggering mode on the oscilloscope can be switched from
Auto to Normal, with a subsequent readjustment of the triggering threshold.

12. Reset the 996 counter. Set the timer section for 1-minute time intervals, and count for 1 minute. Record the number of counts.

13. Increase the high voltage by 50 V and count again for 1 minute. Record the number of counts.

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

EXERCISES

a. Continue making measurements at 50-V intervals until you have enough data to plot a curve on linear graph paper similar to that in
Fig. 2.2 (CAUTION: use only values below V2). The length of the region between V1 and V2 is usually <300 V. A sharp rise in the
counting rate will be observed if you go just above V2. When this happens, the upper end of the plateau has been reached.
Reduce the voltage to V2 immediately. Choose the operating point for your instrument at ~40 to 60% of the plateau range. In other
words, the Geiger counter should be operated at the midpoint of the plateau.

b. Evaluate your Geiger tube by measuring the slope of the plateau in the graph; a good result is 30% per 100 V. The slope of the
plateau is defined as: 

R2 – R1 100
Slope (in % per 100 V) = [ ––––––– ] [ ––––––– ] x 100% (1)

R1 V2 – V1

c. Record the operating voltage selected for use in the remainder of the experiments.

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

EXPERIMENT 2.2. Resolving-Time Corrections for the Geiger Counter 

Purpose 

Later experiments will be dealing with fast electronics capable of resolving sequential events spaced as closely as a few tens of
nanoseconds. In stark contrast, the Geiger counter is very slow in responding to detected events. It takes of the order of a
microsecond for the detector to develop its full response to the incident gamma-ray or charged particle, and it requires hundreds of
microseconds to restore the detector to full sensitivity for the next event. The strict definition of the dead time of the Geiger counter is
the time from initial response to a detected event until the detector can exhibit the earliest, albeit crippled, response to a subsequent
event. But, the electronics processing the Geiger tube output pulses has a fixed voltage threshold that the pulses must exceed to be
counted. Thus the resolving time includes the previously defined dead time, but adds the time it takes for subsequent pulses to
recover to a sufficient amplitude to cross the discriminator threshold and be counted. In practice, the distinction between dead time

and resolving time is often blurred, and the resolving time is frequently labeled as the dead time. That is a pragmatically empirical
convention, because the measurement of counting rate is always made after the supporting electronics has added its contribution to
the dead time. 

The large dead time of the Geiger counter distorts the measured counting rate for counting rates above 5000 counts/minute. Thus, it
is usually necessary to make a dead-time correction to obtain the true counting rate. In this experiment the measurement of the dead
time will be accomplished with a split source. The measured dead time will be employed to correct the counting rates in all the
subsequent measurements.

Relevant Equations

The dead time of a nuclear radiation counting system is typically dominated by one of two types of dead time: 1) paralyzable (a.k.a.,
extending) dead time, or 2) non-paralyzable (a.k.a., non-extending) dead time. For a full explanation see references 1 and 11. The
dead time contributed by the Geiger counter is reasonably accurately modeled as a non-paralyzable dead time. The measured
counting rate, R, is related to the true counting rate, r, at the input to the detector via equation (2).

r
R = ––––––– (2)

1 + rTd

Where Td is the dead time caused by each quantum of radiation that is detected when the counter is free to accept a new event. Note

that the dead time reduces the measured counting rate relative to the true counting rate, and higher counting rates cause a greater
relative reduction. 
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In practice, the experimenter only has access to the measured counting rate, R, after dead time losses have occurred. Consequently,
it is important to calculate the true counting rate, and this requires knowing the dead time per pulse, Td. If equation (2) is rearranged

to the form in equation (3), one can compute the true counting rate from the measured counting rate and the known dead time per
pulse.

R
r = ––––––– (3)

1 – RTd

Another useful way to express the information in equations (2) and (3) is the percent dead time loss:

r – R rTdPercent Dead Time = –––––  x 100% = RTd x 100% = ––––––– x 100% (4)
r 1 + rTd

One way to measure the dead time per pulse, Td, would be to observe the output of the GM Pulse Inverter on the oscilloscope and

determine the minimum spacing between the leading edges of two successive pulses. Because the arrival times of the pulses are
randomly distributed in time, this method requires a fairly high counting rate to make it easy to find the minimum pulse spacing. There
is a risk that the excessively high counting rate changes the dead time per pulse compared to what would be experienced at the
counting rates normally used to assay the activity of radioactive samples.

The split source method has the advantage of assessing the dead time per pulse at the counting rates normally employed in assays.
In this scheme, the radioactive source is contained in a circular disc that has been sectioned into two halves. Each half contains
approximately the same source activity. With both halves positioned side-by-side to form the complete circular disk, the distance of
the source from the window of the Geiger tube is adjusted to achieve a percent dead time in the range of 10% to 20%. For a 100-µs
dead time, this implies measured counting rates in the range of 1,000 to 2,000 counts/s, or 60,000 to 120,000 counts per minute.

Next, the first half of the source is removed, and the counting rate of the second half, R2, is measured. Subsequently, the first half is

carefully reinstalled without disturbing the second half, and the counting rate from the pair of sources, R12, is measured. Finally, the

second half of the disk is removed without disturbing the first half, and the counting rate, R1, is measured. R1, R2, and R12 can be

inserted into equation (3) to write the equations for r1, r2, and r12, respectively. Because of the dead time, R12 < (R1 + R2). But for the

true counting rates

r12 = r1 + r2 (5)

Combining equation (5) with the expressions for r1, r2 and r12 from equation (3), permits solving for Td in terms of the measured

counting rates. From reference 1, the exact solution for the case of zero background is

R1R2 – [R1R2(R12 – R1)(R12 – R2)]1/2
Td = ––––––––––––––––––––––––––––––– (6)

R1R2R12

An approximate solution that is sometimes employed is

R1 + R2 – R12Td ≈ ––––––––––––– (7)
2R1R2

Procedure 

1. Place both halves of the radioactive source split disk on the sample-holder shelf, with the disk centered below the Geiger counter
window. Set the 996 Timer and Counter for a 1-minute counting interval. 

2. Measure the counts for 1 minute.

3. If the number of counts in step 2 is not between 60,000 and 120,000, adjust the source to detector distance to bring the counting
rate within that range by repeating steps 1 and 2.

4. Remove the left half of the split source and make a 1-minute count on the right half. Record the count. Define this count to be R1. 

5. Being careful not to disturb the right half, place the left half of the source alongside the right half and make a 1 minute count.
Define this count to be R12. 

6. Being careful not to disturb the left half, remove the right half and count the left half for 1 minute. Define this count to be R2.

Calculate the resolving time of the Geiger tube via equation (6). The answer should be in minutes/count. Because counts are often
considered a dimensionless number, the dead time can also be expressed simply in minutes or seconds.

The dead time established in step 6 should be used to correct all measured counting rates via equation (3) whenever the percent
dead time exceeds 1%.

Experiment 2
Geiger Counting
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– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

EXERCISES

a. Calculate the value of Td from equation (7) and compare it to the result from equation (6). What is the percent error in the

approximate result from equation (7) compared to the more exact result from equation (6)?

b. Based on equation (4), what is the measured counting rate that will correspond to a 1% dead time? Correct all subsequent
measurements above that counting rate for the dead time loss.

c. Considering the apparatus and procedures employed in this measurement, what are the most important sources of error in
measuring Td?

d. Using the oscilloscope, determine the minimum observable time between the leading edge of successive pulses. It may be useful
to use both half-disks and move the sources closer to the Geiger counter window for this measurement. What is the percent
difference between this minimum separation and the value of Td from equation (6)?

e. Some split source kits include a blank half-disk to replace the removed source half. The idea is that each half-disk scatters some of
the radiation from the other half-disk into the Geiger counter. The blank half-disk duplicates that scattering when either of the active
halves is removed. If your source kit includes the blank half disk, an optional measurement is to employ the blank, and determine
whether it changes the measured dead time. 

f. BONUS QUESTION: Remove both active halves of the split source and measure the background counts for one minute. Based on
the equations in reference 1, would correcting for the background make a difference in the computed value for Td? 

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

EXPERIMENT 2.3. Half-Life Determination

Purpose

The purpose of this experiment is to construct a decay curve and determine the half-life of an unknown isotope. The instructor will
provide the unknown short half-life source to be used for this experiment. You will be advised at what time intervals counts are to be
made, and the recommended duration for the counting time. For example, the instructions might be to take one 10-minute
measurement every hour for the next 6 hours, or one 2-minute measurement every 15 minutes for the next 3 hours.

Relevant Equations

Radioisotopes decay randomly in time. It is not possible to predict when a specific nucleus will decay. However, when a very large
ensemble of N atoms of a specific radioisotope are present, it is possible to predict the probability that one of the nuclei will decay in
an infinitesimal increment of time. The probability of decay per unit time, dN/dt, is proportional to the number of radioactive nuclei
present.

dN
–––– = –λN (8)

dt

Where λ is the decay constant, and is characteristic of the particular radioisotope. The number of decays per second, dN/dt, is also
known as the activity, A.

Solving the differential equation (8) leads to the equation describing the exponential decrease in activity as a function of time.

A = A0e–λt (9)

Where A0 is the activity at time t = 0. The activity can be measured in units of disintegrations per second (dps), Becquerels, or Curies

(Ci). One Becquerel is one disintegration per second, and 1 Curie is equivalent to 3.7 x 1010 disintegrations per second.

When the half-life, T1/2, of the radioisotope is defined as the time it takes for the activity to decrease to 1/2 of its former value, λ can

be replaced by

0.693
λ = –––––– (10)

T1/2

Experiment 2
Geiger Counting



The Geiger counter employed in this experiment intercepts only a fraction of the radiation emitted by the radioactive source, because
of the small solid angle subtended, and the efficiency of the detector. However, the true counting rate, r, is still proportional to the
activity.

r = r0exp(–0.693 t/T1/2) (11)

Where r0 is the counting rate at time t = 0.

Taking the natural logarithm of both sides of equation (11) leads to a linear equation:

0.693
ln r = ln r0 – –––––– t (12)

T1/2

Thus, plotting the true counting rate versus time on semilog graph paper will yield a straight line. The decay constant and the half-life
can be derived from the slope of that line.

Procedure

1. Set the Geiger tube at the operating voltage determined in Experiment 2.1.

2. Place the unknown half-life source 2 cm away from the Geiger tube window and make a count as in Experiment 2.1.

3. Record the time of day, counting duration, and number of counts.

4. After the period of time recommended by the laboratory instructor, repeat the measurement. Be sure to place the sample at exactly

the same distance from the Geiger tube window.

5. Continue the measurements at the time intervals recommended by the instructor. When you are not making half-life

measurements, you can continue with the other sub-sections of Experiment 2.

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

EXERCISES

a. When you have completed your half-life measurements, correct the counting rates for dead-time losses (see Experiment 2.2), and

plot the corrected counting rates as a function of time on semilog graph paper. A straight line should result.

b. Determine the half-life from the curve and find λ, the decay constant for the isotope.

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

EXPERIMENT 2.4. Linear Absorption Coefficient 

Purpose 

When gamma radiation passes through matter, it undergoes absorption primarily by Compton, photoelectric, and pair-production
interactions. The intensity of the radiation is thus decreased as a function of distance in the absorbing medium. The purpose of this
experiment is to measure the attenuation of the intensity with absorber thickness, and to derive the half-thickness and the attenuation
coefficient. 

Relevant Equations

The mathematical expression for the surviving intensity, I, is given by the following: 

I = I0e–µx (13)

Where

I0 = original intensity of the beam, 

I = intensity transmitted through an absorber to a distance, depth, or thickness, x, 
µ= linear absorption coefficient for the absorbing medium. 

6
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If we rearrange Eq. (13) and take the logarithm of both sides, the expression becomes 

I
ln (––) = –µx (14)

I0

The half-value layer (HVL) of the absorbing medium is defined as that thickness, x1/2, which will cut the initial intensity in half. That is,

I/I0 = 0.5. If we substitute this into Eq. (14), 

ln(0.5) = –µx1/2 (15)

Putting in numerical values and rearranging, Eq. (15) becomes 

0.693 0.693
x1/2 = –––––– or µ = –––––– (16)

µ x1/2

Experimentally, the usual procedure is to measure x1/2 and then calculate µ from Eq. (16). If the thickness of the absorber is

expressed in cm, then the units of µ are cm–1, and it is known as the linear attenuation coefficient. Often, the thickness of the absorber
is expressed in g/cm2. In that case, the attenuation coefficient has units of cm2/g, and is identified as the mass attenuation coefficient.

Procedure 

1. Set the voltage of the Geiger tube at the operating value determined in Experiment 2.1. 

2. Place the 60Co source about 3 cm from the window of the Geiger tube, and make a 2-minute count. Record the number of counts. 

3. Note the various thicknesses of the lead sheets in the absorber kit. They may all be of equal thickness, or they may have nominal
thicknesses of 1,000 mg/cm2, 2,000 mg/cm2, 3,000 mg/cm2 and 7,000 mg/cm2. This experiment will require a total thickness ranging
from 1,000 mg/cm2 to circa 23,000 mg/cm2 in 1,000 to 2,000 mg/cm2 steps. Incrementing the total thickness will require using the
various foils in suitable combinations to achieve the desired thickness increments.

4. Place the thinnest sheet of lead from the absorber kit between the source and the GM tube window and take another 2-minute
count. Record the value. 

5. Add a second sheet of lead on top of the first to increase the total thickness by a value between 1,000 and 2,000 mg/cm2, and
make another count. 

6. Continue inserting combinations of lead sheets to increment the total thickness in steps of 1,000 to 2,000 mg/cm2 until the number
of counts is 25% of the number recorded with no absorber. Record the counts taken in 2 minutes for each step in the total absorber
thickness.

7. Correct the measured counts for dead time whenever the dead time losses are calculated to be >1%.

8. Make a 2-minute background run with the 60Co source removed to a long distance from the counting station, and subtract this value
from each of the above counts that have been corrected for dead time. Check this background count at the maximum absorber
thickness employed and without any absorbers. The result should be the same, or close enough to the same that the average of
the two background readings can be used for background subtraction from all the corrected counting rates with the source in the
counting position.

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

EXERCISE

a. Correct all the measured counting rates for the dead time measured in Experiment 2.2, if the correction alters the result by more
than 1%. This correction should be applied before the background is subtracted.

b. Record the total density-thickness of the lead in g/cm2 and plot on semilog paper the corrected counts as a function of absorber
density-thickness in g/cm2. The density-thickness is defined as the product of density in g/cm3 times the thickness of the absorber in
cm. 

c. Draw the best straight line through the points, and determine x1/2 and µ from the slope of the line. 

d. How do your values compare with those indicated in references 8 and 9? See also Experiment 3 in this manual, in which this same
experiment is done with a sodium iodide detector. 

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Experiment 2
Geiger Counting
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EXPERIMENT 2.5. Inverse Square Law 

Purpose and Relevant Equations

There are many similarities between ordinary light rays and gamma rays. They are both considered to be electromagnetic radiation;
hence they obey the classical equation 

E = hv (17)

where 

E = energy of the photon in ergs, 
v = the frequency of the radiation in cycles/second, 
h = Planck’s constant (6.624 x 10–27 ergs • s). 

Therefore, in explaining the inverse square law it is convenient to make the analogy between a light source and a gamma-ray source. 

Let us assume that we have a light source that emits light photons at a rate, n0 photons/second. It is reasonable to assume that these

photons are given off in an isotopic manner, that is, equally in all directions. If we place the light source in the center of a clear plastic
spherical shell, it is quite easy to measure the number of light photons per second for each cm2 of the spherical shell. This intensity is
given by 

n0l0 = –––––– (18)
4πrs

2

Where

n0 is the total number of photons per second from the source, 

rs is the radius from the central source of light to the surface of the sphere, and 

4πrs
2 = the total area of the sphere in cm2. 

Since n0 and 4π are constants, I0 is seen to vary as 1/rs
2. This is the inverse square law.

For a radioisotope, whose half-life is extremely long compared to the time taken to implement the series of measurements in this
experiment, n0 is synonymous with the activity, A0, of the radioactive source. Consequently, Equation (18) can be expressed as 

N adr0 = ––– = A0 –––––– ∈int (19)
T 4πrs

2

Where

r0 is the true counting rate derived from the GM tube,

N is the number of counts measured in the counting time T (corrected for dead time and background),
A0 is the activity of the radioactive source,

∈int is the intrinsic efficiency of the GM tube for detecting the gamma rays,

ad is the effective sensitive area of the detector at its entrance window, and

rs is the distance from the point source to the entrance window of the detector.

The factors in Equation (19) can be understood as follows. The effective sensitive area at the input to the detector intercepts a
fraction, ad/4πrs

2, of the total area of the sphere of radius rs. Consequently, the detector intercepts that same fraction of the isotropic

radiation emitted by the source. Only a fraction, ∈int, of the photons impinging on the sensitive area of the detector window are

actually counted by the detector, due to window attenuation and the efficiency of converting photons into ionized atoms in the GM
tube. For more details, see the section on Detection Efficiency in reference 1.

The purpose of this experiment is to verify the 1/rs
2 dependence predicted by Equation (19). 

Procedure 

1. Set the GM tube at the proper operating voltage, and place the 1-µCi 60Co source 1 cm away from the face of the window. 

2. Count for a period of time long enough to get reasonable statistical precision (≥4000 counts). 

3. Move the source to 2 cm, and repeat the measurement for the same amount of time. Continue for the distances listed in Table 2.1.
(Note that for the longer distances the time will have to be increased to obtain the minimum number of counts necessary for
adequate statistical precision.)

Experiment 2
Geiger Counting
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– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

EXERCISES

a. Correct the counts, N, first for dead time and then for background, and
fill in the corrected counting rate in Table 2.1. 

b. On linear graph paper, plot the corrected counting rate (y axis) as a
function of distance (x axis). This plot should have the 1/rs

2

characteristics exhibited by Equations (18) and (19).

c. Is there another way to plot this data so that the exponent for rs in

Equations (19) can be confirmed to be 2? See Experiment 2.4 for ideas.
Try your idea, and report how closely the measured exponent
approximates 2. 

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Equation (19) can be rearranged in the form

A0ad∈intr0rs
2 = –––––––– = K (20)

4π

Consequently, the product of the true counting rate and the square of the source-to-detector distance should be a constant for all
positions.

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

EXERCISES

d. Multiply the corrected counting rates from Table 2.1 by the corresponding source-to-detector window distance to calculate K for
each position. Plot the values for K (y axis) versus rs (x axis) on linear graph paper. Choose a y-axis scale that permits observation

of the scatter in the individual values of K.

e. If Equations (18) through (20) are valid, the value of K should be constant. Is there a systematic change in the value of K versus
the source-to-detector distance? Why? (See the section on Detection Efficiency in reference 1 for possible explanations.) 

f. Are there random fluctuations of K in the graph? What are the possible sources of those random variations?

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

EXPERIMENT 2.6. Counting Statistics 

Purpose 

As is well known, each measurement made for a radioactive sample is independent of all previous measurements, because
radioactive decay is a random process. Repeated individual measurements of the activity vary randomly. However, for an ensemble
comprising a large number of repeated, individual measurements, the deviation of the individual counts from what might be termed
the "ensemble average count" behaves in a predictable manner. Small deviations from the average are much more likely than large
deviations. In this experiment, we will see that the frequency of occurrence of a particular deviation from this average, within a given
size interval, can be determined with a certain degree of confidence. Fifty independent measurements will be made, and some rather
simple statistical treatments of the data will be performed. The experiment utilizes a 60Co source which has a half-life that is very long
compared to the measurement time. The 5.26-year half-life ensures that the activity can be considered constant for the duration of the
experiment.

Experiment 2
Geiger Counting

Table 2.1

Distance N/T (counts/min) Corrected N/T (counts/min)

1 cm

2 cm

3 cm

4 cm

5 cm

6 cm

7 cm

8 cm
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Relevant Equations

The average count for n independent measurements is given by 

N1 + N2 + N3 + ... ... ... + NnNav = –––––––––––––––––––––––– = (21)
n

where N1, N2, N3, …… Nn and Ni are the counts in the n independent measurements.

The deviation of an individual count from the mean is (Ni – Nav). Based on the definition of Nav

(Ni – Nav) = 0 (22)

For cases where the percent dead time losses are small, it can be shown that the expected standard deviation, σN, can be estimated

from 
___       __

σN ≈ √Nav ≈  √Ni (23)

with the estimate from Nav being more precise than the estimate from the individual measurement Ni. See references 10 and 11 for

details. Thus, σN is the estimate of the standard deviation expected for the distribution of the measured counts, Ni, around the true

mean.

Frequently, one is dealing with counting rates, rather than counts. If the true counting rate is defined by the number of counts
accumulated in the counting time T, i.e.,

Niri = –– (24)
T

then, the estimated standard deviation in the counting rate can be calculated from

___       __            ___
σN √Nav √Ni riσr = ––– ≈ ––––– ≈ ––––– =      ––– (25)
T T T T

A meaningful way to express the statistical precision of the measurement is via the percent standard deviation, which is defined by

σr σN 100%
σ% = ––– x 100% = –––– x 100% = ––––– (26)___

ri Ni √Ni

Note that achieving a 1% standard deviation requires 10,000 counts.

Procedure 

1. Set the operating voltage of the Geiger tube at the value determined in Experiment 2.1. 

2. Place the 60Co source far enough away from the window of the GM tube so that ~ 1000 counts can be obtained in a time period of
0.5 min. 

3. Without moving the source, take 50 independent 0.5 minute runs and record the counts for each run in Table 2.2. (Note that you
will have to extend Table 2.2; only ten entries are illustrated.) The counter values, Ni, may be recorded directly in the table since,

for this experiment, Ni is defined as the number of counts recorded for a 0.5 minute time interval. 

4. With a calculator determine Nav from Equation (21). Fill in the values of Ni – Nav in Table 2.2. It should be noted that these values

can be either positive or negative. You should indicate the sign in the data entered in the table. 

Experiment 2
Geiger Counting

n

∑
i = 1

Ni–––
n

n

∑
i = 1

√



– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

EXERCISES

a. Calculate σN, and fill in the values for σN and (Ni – Nav)/σN in

the table, using only two decimal places. Next, round off the
values for (Ni – Nav)/σN to the nearest 0.5 and record the

values in the “Rounded Off” column of the table. Note that in
Table 2.2 we have shown some typical values of (Ni – Nav)/σN

and the rounded-off values for guidance. 

b. Make a plot of the frequency of the rounded-off events 
(Ni – Nav)/σN vs. the rounded-off values. Fig. 2.3 shows this

plot for an ideal case. Note that at zero there are eight
events, etc. This means that in our complete rounded-off data
in Table 2.2 there were eight zeros. Likewise, there were
seven values of +0.5, etc. 

c. Does your plot follow a normal distribution similar to that in
Fig. 2.3? 

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
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Table 2.2*

Run Ni σN Ni – Nav

(Ni – Nav)/σN

(Ni – Nav)/σN

(Rounded Off)

Typical Measured Typical Measured

1 –0.15 0

2 +1.06 +1.0

3 +0.07 0

4 –1.61 –1.5

5 –1.21 –1.0

6 +1.70 +1.5

7 –0.03 0

8 –1.17 –1.0

9 –1.67 –1.5

10 +0.19 0

*Typical values of (Ni – Nav)/σN and (Ni – Nav)/σN Rounded Off;

listed for illustrative purposes only. 

Fig. 2.3.  Typical Plot of Rounded-Off Events versus the
Rounded-Off Values.


