King Fahd University of Petroleum & Minerals Mechanical Engineering Department

ME551: Continuum Mechanics Spring Semester (082) Days: SM, Time: 6:15PM-7:45 PM, Room: 24-106

Catalog Description: ME 551 Continuum Mechanics

Review Tensors, indicial notation, transformation of coordinates. Stresses, principal stresses. Mohr's circles. Deformation and strain. Velocity fields and compatibility conditions. Constitutive equations. Isotropy. Mechanical properties of solids and fluids. Field equations: applications to elasticity, viscoelasticity, plasticity, and fluid mechanics. **Prerequisite: Graduate Standing**

Textbook: J.H. Heinbockel, *Introduction to Tensor Analysis and Continuum Mechanics*, Trafford Publishing 2001.

References:

- Mase, G.E., <u>Schaum's Outline of Continuum Mechanics</u>, McGraw-Hill, 1969.
- Frederick, D., Chang, T.S., <u>Continuum Mechanics</u>, Scientific Publishers Inc., 1972.
- Fung, Y.C., First Course in Continuum Mechanics, 3rd Ed, Prentice Hall, 1994.
- Chandrasekharaiah, D.S., Debnath, L., <u>Continuum Mechanics</u>, Academic Press, 1994.
- Spencer, A.J.M. "Continuum Mechanics", Dover Publications, 2004.

Instructor: Dr. Hussein Al-Qahtani

Room 22-215-3, Phone: 2846, E-mail: QahtaniH@kfupm.edu.sa

Course Content Outline:

Topics Covered	#Lectures
 INDEX NOTATION Symmetric and Skew-Symmetric Systems Summation Convention, Addition, Multiplication and Contraction The e-permutation symbol and Kronecker delta The e-δ Identity & Generalized Kronecker delta Additional Applications of the Indicial Notation Transformation Equations Calculation of Derivatives Vector Identities in Cartesian Coordinates Indicial Form of Integral Theorems Determinants, Cofactors 	(3)
 TENSOR CONCEPTS AND TRANSFORMATIONS Reciprocal Basis Coordinate Transformations Scalars, Vectors and Tensors Transformations Form a Group Cartesian Coordinates Scalar Functions and Invariance Vector Transformation, Covariant & Contravariant Components Higher Order Tensors, Dyads and Polyads Operations Using Tensors 	(3)
TENSOR NOTATION FOR VECTOR QUANTITIES 1. Gradient, Divergence, Curl, and Laplacian	(2)

(3-0-3)

King Fahd University of Petroleum & Mine Mechanical Engineering Department <u>ME551: Continuum Mechanics</u> Spring Semester (082) Days: SM, Time: 6:15PM-7:45 PM, Room: 24-106	erals
2. Eigenvalues and Eigenvectors of Symmetric Tensors	
 BASIC EQUATIONS OF CONTINUUM MECHANICS Hooke's Law Normal and Shearing Stresses The Stress Tensor & Cauchy Stress Law Conservation of Linear & Angular Momentum Strain in Two Dimensions Transformation of an Arbitrary Element Cartesian Tensor Derivation of 3D Strain. Lagrangian and Eulerian Systems General Tensor Derivation of 3D Strain. Compressible and Incompressible Material Conservation of Mass 	(4)
 CONTINUUM MECHANICS (SOLIDS) Constitutive Equations Restrictions on Elastic Constants due to Symmetry Material Symmetries & Axis of Symmetry Alternative Approach to Constitutive Equations Basic Equations of Elasticity Navier's Equations & Boundary Conditions General Solution of Navier's Equations Compatibility Equations Cartesian Derivation of Compatibility Equations Compatibility Equations in Terms of Stress Plane Strain & Plane Stress Airy Stress Function 	(8)
 CONTINUUM MECHANICS (FLUIDS) Constitutive Equations for Fluids Linear Viscous Fluids Navier-Stokes-Duhem Equations of Fluid Motion Scaled Variables Boundary Conditions Conservation of mass, Momentum, and Energy Conservative Systems Computational Coordinates Fourier law of heat conduction Equilibrium and Nonequilibrium Thermodynamics Equation of state Entropy inequality 	(8)

Grading

Homework	10%
First Midterm Exam (Monday, April 6 th 2008)	20%
Second Midterm Exam (Monday, May 25 th 2008)	20%
Term Paper / Project(Presented in Week No. 15)	20%
Final Exam	30%