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An analysis of the propogation of thermoelastic waves in a homogeneous, anisotropic, thermally
conducting plate has been presented in the context of the generalized Lord-Shulman theory of
thermoelasticity. Three different methods are used in this analysis: two of them are exact and the
third is a semianalytic finite element method(SAFE). In our exact analysis, two different approaches
are used. The first one, which is applicable to transversely isotropic plate, is based on introducing
displacement potential functions, whereas in the second approach, which is applicable to any
triclinic material, we rewrite the governing equations and boundary conditions in a matrix form.
Finally, in the SAFE method, the plate is discretized along its thickness usingN parallel,
homogeneous layers, which are perfectly bonded together. Frequency spectrum and dispersion
curves are obtained using the three methods and are shown to agree well with each other. The effects
of thermal relaxation time and coupling term are also investigated. Numerical calculations have
been presented for a silicon nitridesSi3N4d plate. However, the methods can be used for other
materials as well. ©2004 American Institute of Physics. [DOI: 10.1063/1.1776323]

I. INTRODUCTION

During the second half of the 20th century, nonisother-
mal problems of the theory of elasticity have been investi-
gated extensively. This is due mainly to their many applica-
tions in widely diverse fields. First, in the field of
nondestructive evaluation, laser-generated waves have at-
tracted great attention owing to their potential application to
noncontact and nondestructive evaluation of sheet materials.
Second, the high velocities of modern aircraft give rise to
aerodynamic heating, which produces intense thermal
stresses, reducing the strength of the aircraft structure. Third,
in the nuclear field, the extremely high temperatures and
temperature gradients originating inside nuclear reactors in-
fluence their design and operations.1 Moreover, it is well
recognized that the investigation of the thermal effects on
elastic wave propogation has bearing on many seismological
and astrophysical problems.2

Most materials undergo appreciable changes of volume
when subjected to variations of the temperature. If thermal
expansions or contractions are not freely admitted, tempera-
ture variations give rise to thermal stresses. Conversely a
change of volume is attended by a change of the temperature.
When a given element is compressed or dilated, these vol-
ume changes are accompanied by heating and cooling, re-
spectively. The study of the influence of the temperature of
an elastic solid upon the distribution of stress and strain, and
of the inverse effect of the deformation upon the temperature
distribution is the subject of thermoelasticity.3

The classical theory of heat conduction in solids rests
upon the hypothesis that the flux of heat is proportional to
the gradient of the temperature distribution. As a conse-
quence of this hypothesis, the equation is governed by a
parabolic partial differential equation, which predicts that the

application of a thermal disturbance in a body instanta-
neously affects all points of the body. This assumption of
infinite speed is contrary to physical phenomenon. To re-
move this paradox inherent in the classical theory, a theory
of generalized thermoelasticity was developed. This general-
ized theory accounts for the short time required to establish a
steady state heat conduction when a temperature gradient is
suddenly produced in the solid. This short time is called the
thermal relaxation time. The concept of generalized ther-
moelasticity has led to a wide range of extensions of the
classical theory of thermoelasticity. Various generalization
include the following.

(i) Thermoelasticity proposed by Lord and Shulman in
1967 (L–S model),4 in which, in comparison to the
classical theory, the Fourier law of heat conduction is
modified by taking into consideration a single relax-
ation time.

(ii ) Thermoelasticity introduced by Green and Lindsay in
1972 (G–L model),5 in which the constitutive rela-
tions for the stress tensor and the entropy are gener-
alized by introducing two different relaxation times.

(iii ) Thermoelasticity without energy dissipation, proposed
by Green and Naghdi in 1992(G–N model),6 in
which, the Fourier law is replaced by a heat flux
rates–temperature gradient relaxation.

These generalization are the most important ones. For
other variations, one can refer for instance to Hetnarski and
Ignaczk.7

Guided thermoelastic waves were considered by several
researchers. Nayfeh and Nemat-Nasser,8 Sinha and Sinha,9

Agarwal,10 Sherief and Helmy,11 and Abd-alla and Al-dawy12

studied isotropic thermoelastic Rayleigh waves. Massalas,13

Daimaruya and Naioth,14 Massalas and Kalpakidis,15

Sharma, Singh, and Kumar,16 considered the propagation of
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guided thermoelastic waves in an isotropic plate. Sharma and
Sharma17 studied the free vibration of a thermoelastic cylin-
drical panel.

In contrast, little work has been reported on thermoelas-
tic waves in anisotropic plates. The main focus of our work
will be on the laser-generated waves in thermoelastic aniso-
tropic plate. As mentioned above, the technique of laser-
generated waves has potential application to noncontact and
nondestructive evaluation and characterization of sheet ma-
terials in industry. It was demonstrated that the thickness of
and moduli of thin plates can be measured experimentally
using laser-generated waves.18 In the first part of our work,
dispersion relations for thermoelastic anisotropic plate will
be studied. These relations are investigated first because of
their importance in calculating elastic and thermal properties
of materials. Moreover, using dispersion relations, it is then
possible to analyze transient response of a plate heated by a
laser pulse which will be the subject of our future investiga-
tion. The study is carried out in the context of Lord-Shulman
(L–S) theory of thermoelasticity using single relaxation time.
Two different methods have been used to model the problem.
The first is an exact analysis using two different approaches
(Secs. II A and II A 2) and a semianalytic finite element
method(SAFE) (Sec. II B). Numerical results and discussion
are presented in Sec. III. This work concludes with a discus-
sion of possible future work.

II. THEORETICAL FORMULATIONS

We consider an infinite homogeneous transversely iso-
tropic thermally conducting elastic plate at a uniform tem-
peratureT0 in the undisturbed state having a thicknessH, see
Fig. 1. The motion is assumed to take place in three dimen-
sionssx,y,zd. The displacements in thex, y, andz directions
areu,v, andw, respectively.

A. Exact analysis

In the absence of body forces and internal heat source
the generalized L–S thermoelasticity governing equations are

si j ,j = rüi , s1d

qi,j = − T0rḣ, s2d

si j = cijklekl − bi jT, s3d

rḣ = bi j ėi j +
rCE

T0
Ṫ, s4d

ei j = 1
2sui,j + uj ,id, s5d

qi + t0q̇i = − KijT,j . s6d

In the above equations, a comma followed by a suffix de-
notes spatial derivative and a superposed dot denotes the
derivative with respect to time.

Various physical variables and material constants ap-
pearing in the above equations are the following:si j , the
components of stress tensor;qi, the components of heat flux
vector;ei j , the components of strain tensor;r, mass density;
Kij , the coefficients of thermal conductivity;t, time; cijkl , the
elastic constants;h, entropy density;bi j , the thermal coeffi-
cients;CE, the specific heat at constant deformation; T, tem-
perature perturbation;t0, thermal relaxation time;ui, the
components of displacement vector;T0, reference tempera-
ture si , j ,k, l =1,2,3d. It is assumed thatuT/T0u !1.

In transversely isotropic material and assuming that thex
axis is the axis of symmetry of the material, the stresses can
be written in terms of the displacements and temperature
variation as

sxx = c11u,x + c12v,y + c12w,z − bxxT, s7d

syy = c12u,x + c22v,y + c23w,z − byyT, s8d

szz= c12u,x + c23v,y + c22w,z − byyT, s9d

syz= c44sv,z + w,yd, s10d

sxz= c55su,z + w,xd, s11d

sxy = c55su,y + v,xd, s12d

where

c44 = 1
2sc22 − c23d

and

bxx = c11axx + 2c12ayy, byy = c12axx + sc22 + c23dayy.

s13d

Here, axx and ayy are the coefficients of linear thermal ex-
pansions inx andy directions, respectively.

By substitution of the foregoing expressions into Eqs.
(1)–(6), one can write the governing equations in terms of
displacement and temperature,

c11u,xx + c12v,xy + c12w,xz

+ c55su,yy + v,xyd + c55su,zz+ w,xzd − bxxT,x = rü, s14d

c55su,xy + v,xxd + c12u,xy + c22v,yy + c23w,yz

+ c44sv,zz+ w,yzd − byyT,y = rv̈, s15d

c55su,xz+ w,xxd + c44sv,yz+ w,yyd + c12u,xz

+ c23u,yz+ c22w,zz− byyT,z = rẅ, s16d

FIG. 1. Geometry of the problem.
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KxxT,xx + KyyT,yy + KyyT,zz− rCEsṪ + t0T̈d

= T0fbxxsu̇,x + t0ü,xd

+ byysv̇,y + t0v̈,yd + byysẇ,z + t0ẅ,zdg. s17d

Note that Eq.(17) reduces to the classical coupled ther-
moelasticity equation for heat conduction ift0=0.

We define the following nondimensional quantities:

x * =
vx

kx
x, y * =

vx

kx
y, z* =

vx

kx
z, t * =

vx
2

kx
t,

u * =
vx

3r

kxbxxT0
u, v* =

vx
3r

kxbxxT0
v,

w* =
vx

3r

kxbxxT0
w, T * =

T

T0,

c1 =
c12

c11
, c2 =

c55

c11
, c3 =

c22

c11
, c4 =

c23

c11
,

c5 =
c44

c11
, d = c1 + c2, b̄ =

byy

bxx
, K̄ =

Kyy

Kxx
,

t0
* =

vx
2

kx
t0, « =

bxx
3 T0

r2CEvx
2 ,

where vx=Îc11/r is the velocity of compressional waves,
kx=Kxx/rCE is the thermal diffusivity in thex direction, and
« is the thermoelastic coupling constant. Using the above
nondimensional quantities, the governing equations are now
written as

u,xx + c1v,xy + c1w,xz+ c2su,yy + v,xyd + c2su,zz+ w,xzd − T,x = ü,

s18d

c2su,xy + v,xxd + c1u,xy + c3v,yy + c4w,yz+ c5sv,zz+ w,yzd − b̄T,y

= v̈, s19d

c2su,xz+ w,xxd + c5su,yz+ w,yyd + c1u,xz+ c4v,yz+ c3w,zz

− b̄T,z = ẅ, s20d

T,xx + K̄T,yy + K̄T,zz− sṪ + t0T̈d = «fsu̇,x + t0ü,xd

+ b̄sv̇,y + t0v̈,yd + b̄sẇ,z + t0ẅ,zdg. s21d

Generally, the coupling term« is small for most materials.19

Table I gives numerical values of some constants for three
different materials, namely, aluminium, zinc, and silicon ni-
tride. In the following two sections, two approaches will be

introduced to solve the above exact formulation.

1. First approach

For convenience, the asterisk will be suppressed from
now on. The displacement can be written in terms of three
potential functions as in Buchwald20 in the form

u =
] Q

] x
, s22d

u =
] F

] y
+

] C

] z
, s23d

w =
] F

] z
−

] C

] y
. s24d

Eliminating the displacements from the equations of mo-
tion produces

Fc2
]2

] x2 + c5¹
2 −

]2

] t2
G¹2C = 0, s25d

d
]2

] x2¹2F + Fc2¹
2 +

]2

] x2 −
]2

] t2
G ]2Q

] x2 −
]2T

] x2 = 0, s26d

d
]2

] x2¹2Q + Fc3¹
2 + c2

]2

] x2 −
]2

] t2
G¹2F − b̄¹2T = 0, s27d

«F ]2

] x2sQ̇ + t0Q̈d + b̄¹2sḞ + t0F̈dG −
]2T

] x2 − K̄¹2T

+ sṪ + t0T̈d = 0, s28d

where

¹2 =
]2

] z2 +
]2

] y2 .

It can be noted that the first equation is decoupled from oth-
ers. Since we are interested in propagating waves in the
plane ofx,y, potentials and temperature are written in the
form

Q = g1szdeiskx+jy−vtd, s29d

F = g2szdeiskx+jy−vtd, s30d

T = g3szdeiskx+jy−vtd, s31d

C = g4szdeiskx+jy−vtd, s32d

wherek,j, andv are, respectively, the nondimentional wave
number in thex direction, the nondimensional wave number

TABLE I. Some numerical constants for different materials.

Material vxm/s kxm
2/s K̄ b̄ «

Aluminum alloy 3.883103 1.02310-11 1 1 2.56310-3

Zinc 4.773103 4.45310-5 1 0.882 2.16310-2

Silicon nitride 1.343104 2.58320-5 0.786 0.843 2.49310-3
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in the y direction, and nondimentional frequency.
By substitution of these assumed potentials into Eq.(25),

we get a second-order ordinary differential equation ing4szd
and a second-order system of differential equation ing1szd,
g2szd, andg3szd. It can be shown that the solutions have the
following forms:

g1 = F1V1 + G1V2 + H1V3, s33d

g2 = F2V1 + G2V2 + H2V3, s34d

g3 = F3V1 + G3V2 + H3V3, . s35d

g4 = F4V4. s36d

Here,

V1 = B11e
is1z + B12e

is1sH−zd, s37d

V2 = B21e
is2z + B22e

is2sH−zd, s38d

V3 = B31e
is3z + B32e

is3sH−zd, s39d

V4 = B41e
irz + B42e

ir sH−zd. s40d

Using Eqs.(29)–(32) and the expression forg1szd, g2szd,
andg3szd in Eqs.(25)–(28), we get for nontrivial soltion

r =Îv2 − c2k
2 − c5j2

c5
s41d

and the determinant of the following matrix must vanish,

3− c2X − k2 + v2 − dX − 1

− dk2 − c3X − c2k
2 + v2 − b̄

«tk2
b̄«tX k2 + K̄X − t

4 ,

s42d

where

X = ss2 + ,2d

and

t = siv + t0v2d,

ands is the nondimensional wave number in thez-direction.
This results in the following cubic equation:

X3 + A1X
2 + A2X + A3 = 0, s43d

whereA1, A2, andA3 are defined in Appendix A. Solving Eq.
(43) yields the following three roots fors2:

s1
2 = − j2 −

A1

3
−

Î32L

3sY + Î4L3 + Y2d1/3

+
sY + Î4L3Y2d1/3

3Î32
, s44d

s2
2 = − j2 −

A1

3
−

s1 + iÎ3Ld

3Î32sY + Î4L3 + Y2d1/3

−
s1 − iÎ3dsY + Î4L3 + Y2d1/3

6Î32
, s45d

s3
2 = − j2 −

A1

3
−

s1 − iÎ3Ld

3Î32sY + Î4L3 + Y2d1/3

−
s1 + iÎ3dsY + Î4L3 + Y2d1/3

6Î32
, s46d

where L=3A2−A1
2 and Y=−2A1

3+9A1A2−27A3. The con-
stants appearing in Eqs.(33)–(36) may be taken as shown in
Appendix A. Now, the temperature gradient and the stresses
of interest are

szz= mzzDv, s47d

sxz= mxzDv, s48d

syz= myzDv, s49d

Tz = mTDv, s50d

where the row vectorsmzz, mxz, myz, andmT are defined in
Appendix A. The matrixD is a diagonal matrix such that

diagfDg

= feis1z,eis2z,eis3z,eirz,eis1sH−zd,eis2sH−zd,eis3sH−zd,eir sH−zdg

s51d

and the generalized coefficients vector can be written as

v = hB11 B21 B31 B41 B12 B22 B32 B42jT. s52d

The boundary conditions are that stresses and temperature
gradient on the surfaces of the plate should vanish. Hence,
we demand that

T,z = szz= szx= szy= 0. s53d

Using boundary conditions(53) in the resulting stresses and
temperature gradient yields eight equations involving the
vector v. In order for the eight boundary conditions to be
satisfied simultaneously, the determinant of the coefficient of
the arbitrary constants in Eq.(52) must vanish. This gives an
equation for the frequency of the guided wave for a given
wave number.

2. Second approach

For an infinite plate one can use Fourier transformation
in space and time domais represented by the following inte-
gral:

F̂sk,j,z;vd =E
−`

` E
−`

` E
−`

`

Fsx,y,z;tdeiskx+jy−vtddx dy dt.

s54d

Here,k,j are the wave numbers inx andy directions, respec-
tively, and v the circular frequency. Applying the Fourier
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transformation(54) to the governing equations will yield the
following eigenvalue problem:

fAgS,z = fBgS, s55d

wereS,z=dS/dz and

Sszd = fû v̂ ŵ T̂ ŝzx ŝyz ŝzzT̂,zgT. s56d

The general solution can be obtained by determining the eigenvalues and the eigenvectors of Eq.(55). Here S is the
displacement-temperature-traction vector and matrices A and B are defined as

A = 3
. . . − 1 . . . .

. . − c3 . . . . .

. − c5 . . . . . .

− c2 . . . . . . .

. . ic1k . 1 . . .

. . ic4j . . 1 . .

. . . . . . 1 .

. . b̄«t . . . . K̄

4 , s57d

B = 3
. . . . . . . − 1

ic1k ic4j . − b̄ . . − 1 .

. . ic5j . . − 1 . .

. . ic2k . − 1 . . .

k2 + c2j2 − v2 kjsc1 + c2d . ik . . . .

kjsc1 + c2d c2k
2 + c3j2 − v2 . ib̄j . . . .

. . − v2 . − ik − ij . .

− i«kt − ib̄«t . k2 + K̄j2 − t . . . .

4 , s58d

wheret= iv+t0v2.
The general solution to Eq.(55) can be written as

Sszd = fQEghCj, s59d

where Q is the resulting eigenvectors matrix from Eq.(55), C are generalized coefficients, and E is a diagonal matrix,

E = diagfeis1z,eis2z,eis3z,eis4z,eis1sH−zd,eis2sH−zd,eis3sH−zd,eis4sH−zdg, s60d

where 1, . . . ,4isp,sp=1,2,3d are the resulting eigenvalues of
the characteristics equations(55), with Imsspdù0. The first
four elements of Eq.(60) represent the wave propagation
along the positivez axis, while the last four elements repre-
sent the wave propagation along the negativez axis.

The boundary conditions are that tractions and tempera-
ture gradient in thez direction on the surfaces of the plate
should vanish. Applying these boundary conditions yields
the dispersion relation for the infinite plate.

B. Finite element method

We rewrite the governing equations in vector form,

hsj = fCgh«j − hbjT, s61d

rḣ = hbjTh«̇j +
rCE

T0
Ṫ, s62d
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hqj + t0hq̇j = − fKghT8j, s63d

whereT8=T,j.
The plate is divided intoN parallel, homogeneos, and

anisotropic layers, which are perfectly bonded together. A
global rectangular coordinate systemsX,Y,Zd is adopted
such thatX andY axes lie in the midplane of the plate, andZ
axis parallel to the thickness direction of the plate. To ana-
lyze the guided wave propagation in such an infinite plate,
we discretize the thickness of the plate using three-noded bar
elements, each of which has associated with it a local coor-
dinate axessx,y,zd, which are parallel to the global coordi-
nate axes.

Two sets of shape functions are introduced to approxi-
mate the displacement and temperature fields on the element
level,

usx,y,z,td = N1
eszduesx,y,td, s64d

Tsx,y,z,td = N2
eszdTesx,y,td, s65d

where

N1
e = 3N1 0 0 N2 0 0 N3 0 0

0 N1 0 0 N2 0 0 N3 0

0 0 N1 0 0 N2 0 0 N3
4 s66d

and

N2
eT= hN1N2N3j. s67d

Nodal displacements and temperatures are stored in the two
vectorsue andue, respectively. Using generalized linear ther-
moelasticity the strain tensor and temperature vector is de-
rived from the kinematic equaitons,

e = D1u,x
e + D2u,y

e + D3u
e, s68d

T8 = B1T ,x
e + B2T ,y

e + B3T
e, s69d

whereB1, B2, B3, D1, D2, andD3 are defined in Appendix B.
The variational forms of Eqs.(68) and (69) are

de = D1du,x
e + D2du,y

e + D3due, s70d

dT8 = B1dT ,x
e + B2dT ,y

e + B3dTe. s71d

Considering the body forcefe, the virtual displacement
principle can be written as the following form:

E
t0

t1E
V

fd«Ts − dT8TKT8 − dT8Tsqi + t0q̇idgdV dt

=E
t0

t1E
V

duTsf − rüddV dt. s72d

Substituting the constitutive relations, Eqs.(61)–(63), into
the variational form, Eq.(72), leads to the following terms:

E
t0

t1E
V

d«TsdV dt =E
t0

t1E
V

d«TsC« − bTddV dt

=E
t0

t1E
V

fsdu,x
eTD1

T + du,y
eTD2

T + dueTD3
TdCsD1du,x

e + D2du,y
e + D3

Tdued − su,x
eTD1

T + u,y
eTD2

T

+ ueTD3
TdbN2

eTTegdV dt

=E
t0

t1E
y
E

x

dueTf− k11
e u,xx

e −k12
e u,xy

e − k13
e u,x

e − k21
e u,xy

e − k22
e u,yy

e − k23
e u,y

e + k31
e u,x

e + k32
e u,y

e + k33
e u,yy

e

+ km01
e T ,x

e + km02
e T ,y

e − km03
e T ,x

e gdx dy dt, s73d

where the elemental matrices appearing in the last equation
are defined in Appendix B. The second term in Eq.(72) can
be written as

E
t0

t1

E
V

dsTeTd8K sTed8dV dt

=E
t0

t1

E
V

sdT ,x
e TB1

T + dT ,y
eTB2

T + dTeTB3
Td

3K sB1T ,x
e + B2T ,y

e + B3T
eddV dt

=E
t0

t1

E
y
E

x

dTeTsg11
e T ,xx

e + g22
e T ,yy

e − g33
e Teddx dy dt, s74d

whereg11, g22, andg33 are defined as

g11
e =E

z

B1
TKB 1dz, g22

e =E
z

B2
TKB 2dz,

g33
e =E

z

B3
TKB 3dz.

The third term of Eq.(72) is
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E
t0

t1

E
V

dsTeTd8sq + t0q̇ddV dt

= −E
t0

t1

E
V

dTeTsq8 + t0q̇8ddV dt

=E
t0

t1

E
V

dTeTsT0rḣ + t0T0rḧddV dt

=E
t0

t1

E
y
E

x

dTeTfsf1
eu̇,x

e + f2
eu̇,y

e + f3
eu̇e + muu

e Ṫd

+ t0sf1ü,x
e + f2ü,y

e + f3ü
e + muu

e T̈ddx dy dt, s75d

whereq8=q,i and

muu
e =E

z

N2
erN2

eTdz, f1
e =E

z

T0N2
ebD1dz,

f2
e =E

z

T0N2
ebD2dz, f3

e =E
z

T0N2
ebD3dz

The right-hand side of Eq.(72) is written as

E
t0

t1

E
V

duTsf − rüddV dt

=E
t0

t1

E
V

dueTN1
eTsf − rN1

eüeddV dt

=E
t0

t1

E
y
E

x

dueTsfe − meüeddx dy dt, s76d

where

fe =E
z

N1
eTfdz, m =E

z

rN1
eTN1

edz.

Equating the coefficient ofdue in Eq. (72) to zero yields

k11
e u,xx

e + k12
e u,xy

e + k13
e u,x

e + k21
e u,xy

e + k22
e u,yy

e + k23
e u,y

e

− k31
e u,x

e − k32
e u,y

e − k33
e ue − km01

e T ,x
e − km02

e T ,y
e + km03

e Te

− meüe = 0. s77d

Similarly, equating the coefficient ofdTe in Eq. (72) yields

t0muu
e T̈e + muu

e Ṫe + t0f1
eü,x

e + t0f2
eü,y

e + t0f3
eüe + f1

eu̇,x
e

+ f2
eu̇,y

e + f3
eu̇e − g11

e T ,xx
e − g22

e T ,yy
e + g33

e Te = 0. s78d

Rewriting the last two equations[Eqs.(77) and(78)] in vec-
tor formats yields

f− M A 0g5 üe

¯

T̈e6 + fK 11 A 0g5u,xx
e

¯

T ,xx
e 6 + fK 12 + K 21 A 0g5u,xy

e

¯

T ,xy
e 6

+ fK 13 − K 31 A − K m01g5u,x
e

¯

T ,x
e 6 + fK 22 A 0g5u,yy

e

¯

T ,yy
e 6

+ fK 23 − K 32 A − K m02g5u,y
e

¯

T ,y
e 6 + f− K 33 A K m03g5ue

¯

Te6 = 0.

s79d

and

ft0F3 A t0Fuug5 üe

¯

T̈e6 + ft0F1 A 0g5 ü,x
e

¯

T̈ ,x
e 6 + ft0F2 A 0g5 ü,y

e

¯

T̈ ,y
e 6

+ fF1 A 0g5 u̇,x
e

¯

Ṫ ,x
e 6 + fF2 A 0g5 u̇,y

e

¯

Ṫ ,y
e 6 + fF3 A M uug5 u̇e

¯

Ṫe6
+ f0 A − G11g5u,xx

e

¯

T ,xx
e 6 + f0 A − G22g5u,yy

e

¯

T ,yy
e 6 + f0 A − G33g

35ue

¯

Te6 = 0. s80d

We assemble the element matrices into the global matri-
ces in the standard manner to yield the equations of motion,

H1V̈ + H2V̈ ,x + H3V̈ ,y + H4V̇ ,x + H5V̇ ,y + H6V̇ + H7V ,xx

+ H8V ,xy + H9V ,yy + H10V ,x + H11V ,y + H12V = 0, s81d

where the matricesH i are defined in Appendix B andV is
the column vector of assembled nodal displacements and
temperatures.

For a wave propagating in theXY plane, we take the
Fourier transform ofVsX,Y,td as

V̂skx,ky,vd =E
−`

`

E
−`

`

E
−`

`

VsX,Y,tdeiskxX+kyY−vtddX dY dt.

s82d

Applying the Fourier transform to Eq.(81) leads to the fol-
lowing expression:

fv2H1 + iv2kxH2 + iv2kyH3 − vkxH4 − vkyH5 + ivH6

+ kx
2H7 + kxkyH8 + ky

2H9 − ikxH10 − ikyH11 − H12gV̂ = 0,

s83d

wherev is the circular frequency andkx andky are the wave
numbers in theX andY directions. For wave propagating in
arbitrary direction in thexy plane making an angleu with X
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axis i.e.,kx=k cosu, andky=k sin u, Eq. (83) is written as

sk2M̄ + kC̄ + K̄ dV̂ = 0, s84d

wherek is the wave number of the wave in the propagation
direction, and

M̄ = − cos2uH7 − cosu sin uH8 − sin2uH9, s85d

C̄ = − iv2cosuH2 − iv2sin u H3 + v cosuH4

+ v sin uH5 + i cosuH10 + i sin uH11, s86d

K̄ = − v2H1 − ivH6 + H12. s87d

Solving the eigenvalue problem represented by Eq.(84)
will determine the dispersion for guided thermoelastic waves
in infinite plates.

III. RESULTS AND DISCUSSION

With the view of illustrating the numerical results ob-
tained by methods presented in the preceding sections, the
material chosen for the plate is silicon nitridesSi3N4d, the
physical data for which is given in Table II. Elastic stiffness
constants can be found in Ref. 21, whereas thermal proper-
ties are collected from Swiftet al.,22 Kitayamaet al.,23 and
Yakota and Ibukiyama.24

The dimensional speed of the thermal wave in thex di-
rection for unbounded medium is

yt =Î Kxx

rCEt0
. s88d

We recall that the relaxation timet0 is introduced to account
for the finite speed of thermal wave. To the best of our
knowledge, no experimental values fort0 have been re-
ported. However, some researchers suggested different ways
of calculating it. Chester25 approximates the speed of the
thermal wave according to the following equation:

yt =
yx

Î3
. s89d

Using this approximation, the dimensional relaxation time is
obtained as

t0 =
3Kxx

CEC11
. s90d

Hence, for silicon nitride, t0 is approximately 4.322
310−13 s st0−nondim=3.0d. Prevost and Tao26 and
Khadrawi, Al-Nimr, and Hammad27 approximated the relax-
ation time by restricting the speed of the thermal wave to be

FIG. 2. 3D frequency spectrum,t0=1.0.

FIG. 3. Top view of frequency spectrum.

TABLE II. Physical data for Si3N4.

Quantity Units Numerical value

r kg/m3 3.203103

c11 N/m2 5.7431011

c12 N/m2 1.2731011

c22 N/m2 4.3331011

c23 N/m2 1.9531011

c55 N/m2 1.0831011

T0 K 296
bxx N/m2 K 3.223106

byy N/m2 K 2.713106

CE J/kg K 0.673103

Kxx W/m K 55.4
Kyy W/m K 43.5
« ¯ 2.49310−3
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equal to the speed of the longitudinal wave giving the fol-
lowing formula for the relaxation time:

t0 =
Kxx

CEC11
. s91d

This gives a valuet0 to be 1.440310−13 s st0−nondim
=1.0d for silicon nitride. The two cases will be considered in
our analysis.

Numerical results are presented in the form of three-
dimensional view of frequency spectrum. These are obtained
by keepingv real and lettingk to be complex. Then, the
phase velocity is defined asc=v /Reskd, and the imaginary
part of thek is a measure of the attenuation of the wave in

space. In order to find the solutions of the characteristic
equation(53) of the exact analysis, Muller’s method is used
to solve it as an analytic complex function. The relations
between the frequency and the wave number expressed by
the characteristic equation yield an infinite number of
branches for an infinite number of elastic and thermal modes.
The dispersion curves of first few modes have been com-
puted and represented graphically in Figs. 2–5 for wave
propagation along the x axis, i.e.,u=0. The first figure shows
a 3D view of the frequency spectrum, respectively. Elastic
modes resemble those of isothermal case since the coupling
parameter« for Si3N4 is quite small. Similar to the isother-
mal case, a complex branch is seen(Fig. 4) originating from
the minimum point on the second longitudinal mode. More-
over, note that 0th-order elastic modes propagate at all fre-
quencies, but the higher order modes have cutoff frequencies
below which they are evanescent. Since the propagation di-
rection is along a principle direction, it is seen that the hori-
zontal shear(SH) modes are uncoupled from the other two
modes. This is evidenced by the intersection of the SH wave
curves with those for the S and A waves.

The first thermal mode shows a similar behavior as the
lowest elastic modes; however, it shows very high attenua-

TABLE III. Representive values ofk at v=3.00, witht0=3.0.

Resjd Imsjd

7.4603 3.7701310-5

6.9277 0
6.0917 0
3.0555 0.4783
2.8532 0.0146
2.8093 0.0013
2.1112 0
1.5155 0.9932
0.8800 3.5483310-4

FIG. 4. Front view of the spectrum.

FIG. 5. Right view of the spectrum. FIG. 6. Frequency spectrum using SAFE.
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tion compared to elastic modes. Other thermal modes origi-
nate with higher imaginary values of wave numbers and
eventually approach the first thermal mode. In order to see
the attenuation associated with thermal modes and some
elastic modes, we pick some numerical values from the fre-
quency spectrum as shown in Table III. It is observed that
some elastic modes exhibit attenuation expressed by the
imaginary value of wave numbers. Points where the imagi-
nary values are relatively high correspond to thermal modes.

Frequency spectrum was also computed by the SAFE
method and graphically shown in Fig. 6. Excellent agree-
ment between SAFE and analytic solution results is observed
by comparing Fig. 6 with Fig. 2. Convergent results of SAFE
analysis can be attained by relatively small number of ele-
ments(ten elements) indicating that the FEM is a powerful

and efficient technique for analyzing thermoelastic problems.
Another advantage is the ease with which layered plates can
be considered.

In order to see the effect of the coupling term in the heat
equation, the frequency spectrum was computed for two
cases, namely,e=0 and e=2.94310−3. The corresponding
frequency spectra are plotted in Fig. 7. The figure shows that
the two spectra are undistinguishable, therefore the coupling
term may be neglected without affecting the results. Doing
so simplifies the exact analysis considerably because the heat
equation gets decoupled from the other elastic equations.
Hence Eq.(43) becomes now quadratic instead of cubic.

In Figs. 8–10 dispersion curves(normalized phase ve-
locity vs normalized frequency) were computed and plotted
along different propagation directions, namely, 0° ,45°, and

FIG. 7. Coupling effect on frequency spectrum.

FIG. 8. Dispersion curves alongu=0°.

FIG. 9. Dispersion curves alongu=45°.

FIG. 10. Dispersion curves alongu=90°.
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90°. The figures show the effect of anisotropy of the plate on
dispersion curves. For instance, the phase velocities of the
elastic and thermal modes decrease as the wave travels from
0° to 90° direction. For all directions, it is seen that all ther-
mal modes except the lowest one start with a finite phase
speed and eventually approach the speed of the first thermal
mode, which originates with vanishing phase speed.

Finally, the effect of relaxation time on frequency spec-
trum is investigated. Frequency spectrum was computed for
the two values of relaxation times that resulted from using
the two different formulas Eqs.(90) and(91). Figures 11 and
12 show frequency spectra for the thermoelastic plate for the
two relaxation times. By examining the figure, it is noticed
that influence of changing relaxation time was mainly on
thermal modes. Increasing the relaxation time causes thermal
modes to have more attenuation. Besides, it results in fast
convergence of higher thermal modes toward the lowest one.
As expected, the velocity of thermal modes increases as the
relaxation time decreases.

IV. CONCLUSIONS

Propagation of guided thermoelastic waves in a homo-
geneous, transversely isotropic, thermally conducting plate
was investigated within the framework of the generalized
theory of thermoelasticity proposed by Lord and Shulman.
This theory includes a thermal relaxation time in the heat
conduction equation in order to model the finite speed of the
thermal wave. Three different methods were used to model
the guided wave dispersion. These include an exact analysis

incorporating two different solution approches and a SAFE
method. The results obtained by these methods were found to
agree very well.

The results show that both elastic and thermal modes are
attenuated, the thermal modes exhibit much larger attenua-
tion than the elastic modes. The attenuation of the former is
quite small. The results agree with previous observations by
Hawwa and Nayfeh.28

The coupling term is generally small for all materials
and can be neglected. Neglecting the coupling term simpli-
fies the analysis without noticeable effect on the frequency
spectrum as we saw earlier.

Because of the small relaxation time exhibited by the
materials under consideration the thermal wave modes have
much larger phase speeds than the elastic modes. The effect
of increasing the relaxation time is to lower the speeds of the
thermal modes.

The effect of anisotropy of the material is quite pro-
nounced on waves propagating in different directions along
the plate. Thus, it is important to consider the anisotropy of
the material in order to accurately model the propagation
characteristics for material characterization and transient re-
sponse.

While this paper dealt with the modal dispersion of
guided waves, the transient response of a plate due to a laser
pulse will be reported in a subsequent paper. The latter is
investigated by using the modal sum and a fast Fourier
transform.

APPENDIX A: EXACT ANALYSIS

A1 =
1

c2c3K̄
fsc2c3 + c2

2K̄ + c3K̄ − d2K̄dk2 − sc2c3 + c2b̄«dt − sc2 + c3dK̄v2g,

FIG. 12. Top view of Fig. 11.

FIG. 11. The effect of relaxation time,t01=3.0, t02=1.0.
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A2 =
1

c2c3K̄
fsc2

2 + c3 + c2K̄ − d2dk4 + sd2 + 2b̄d« − c2
2 − c3 − c3« + b̄2«dtk2 − sc2 + c3 + K̄ − c2K̄dk2v2 + sc2 + c3 + b̄2«dtv2

+ K̄v4g,

A3 =
1

c2c3K̄
fsc2k

6 − s1 − «dc2tk4 − s1 − c2dk4v2 + s1 + c2 + «dtk2v2 + sk2 − tdv4g,

F1 = G1 = H1 = F4 = 1,

F2 =
sd − b̄dk2 + b̄fv2 − c2ss1

2 + j2dg

v2 − c2k
2 − sc3 − b̄ddss1

2 + j2d
,

F3 =
fk2 + c2ss1

2 + j2d − v2gfc2k
2 + c3ss1

2 + j2 − v2dg − d2k2ss1
2 + j2d

v2 − c2k
2 − sc3 − b̄ddss2

2 + j2d
,

G2 =
sd − b̄dk2 + b̄fv2 − c2ss2

2 + j2dg

v2 − c2k
2 − sc3 − b̄ddss2

2 + j2d
,

G3 =
fk2 + c2ss2

2 + j2d − v2gfc2k
2 + c3ss2

2 + j2 − v2dg − d2k2ss2
2 + j2d

v2 − c2k
2 − sc3 − b̄ddss2

2 + j2d
,

H2 =
sd − b̄dk2 + b̄fv2 − c2ss3

2 + j2dg

v2 − c2k
2 − sc3 − b̄ddss3

2 + j2d

G3 =
fk2 + c2ss3

2 + j2d − v2gfc2k
2 + c3ss3

2 + j2 − v2dg − d2k2ss3
2 + j2d

v2 − c2k
2 − sc3 − b̄ddss3

2 + j2d
,

mzz=5
− c1k

2F1 − sc3s1
2 + c4j2dF2 − b̄F3

− c1k
2G1 − sc3s2

2 + c4j2dG2 − b̄G3

− c1k
2H1 − sc3s3

2 + c4j2dH2 − b̄H3

c3rjF4 − c4gjF4

− c1k
2F1 − sc3s1

2 + c4j2dF2 − b̄F3

− c1k
2G1 − sc3s2

2 + c4j2dG2 − b̄G3

− c1k
2H1 − sc3s3

2 + c4j2dH2 − b̄H3

c3rjF4 − c4gjF4

6
T

,

mzx= c2h− ks1sF1 + F2d,− ks2sG1 + G2d,− ks3sH1 + H2d,kjF4,ks1sF1 + F2d,ks2sG1 + G2d,ks3sH1 + H2d,− kjF4j,

mzy= c5h− 2s1jF2,− 2s2jG2,− 2s3jH2,sj2 − r2dF4,2s1jF2,2s2jG2,2s3jH2,− sj2 − r2dF4j,

mT = his1F3,is2G3,is3H3,0,− is1F3,− is2G3,− is3H3,0j.
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APPENDIX B: FINITE ELEMENT MATRICES

B1 = 3N1 N2 N3

. . .

. . .
4, B2 = 3 . . .

N1 N2 N3

. . .
4 , B3 = 3 . . .

. . .

N1,z N2,z N3,z
4 ,

D1 = 3
N1

.

.

.

.

.

.

.

.

.

.

N1

.

.

.

.

N1

.

N2

.

.

.

.

.

.

.

.

.

.

N2

.

.

.

.

N2

.

N3

.

.

.

.

.

.

.

.

.

.

N3

.

.

.

.

N3

.

4 , D2 = 3
.

.

.

.

.

N1

.

N1

.

.

.

..

.

.

.

N1

.

.

.

.

.

.

.

N2

.

N2

.

.

.

.

.

.

.

N2

.

.

.

.

.

.

.

N3

.

N3

.

.

.

.

.

.

.

N3

.

.

4 ,

D3 = 3
.

.

.

.

N1,z

.

.

.

.

N1,z

.

.

.

.

N1,z

.

.

.

.

.

.

.

N2,z

.

.

.

.

N2,z

.

.

.

.

N2,z

.

.

.

.

.

.

.

N3,z

.

.

.

.

N3,z

.

.

.

.

N3,z

.

.

.

4 ,

k11
e =E

z

D1
TCD1dz, k12

e =E
z

D1
TCD2dz,

k13
e =E

z

D1
TCD3dz, k21

e =E
z

D2
TCD1dz,

k22
e =E

z

D2
TCD2dz, k23

e =E
z

D2
TCD3dz,

k31
e =E

z

D3
TCD1dz, k32

e =E
z

D3
TCD2dz,

k33
e =E

z

D3
TCD3dz, km01

e =E
z

D1
TCbN2

eTdz,

km02
e =E

z

D2
TCbN2

edz, km03
e =E

z

D3
TCbN2

eTdz,

H1 = 3− M A 0

. . . . . . . . .

t0F3 A t0M uu

4, H2 = 3 0 A 0

. . . . . . . . .

t0F1 A 0
4 ,

H3 = 3 0 A 0

. . . . . . . . .

t0F2 A 0
4, H4 = 3 0 A 0

. . . . . . . . .

F1 A 0
4 ,

H5 = 3 0 A 0

. . . . . . . . .

F2 A 0
4, H6 = 3 0 A 0

. . . . . . . . .

F3 A M uu

4 ,

J. Appl. Phys., Vol. 96, No. 7, 1 October 2004 H. AL-Qahtani and S. K. Datta 3657

Downloaded 22 Jun 2005 to 212.26.1.29. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



H7 = 3K 11 A 0

. . . . . . . . .

0 A − G11
4, H8 = 3K 12 + K 21 A 0

. . . . . . . . .

0 A 0
4 ,

H9 = 3K 22 A 0

. . . . . . . . .

0 A − G22
4 , H10 = 3K 13 − K 31 A − K mu1

. . . . . . . . .

0 A 0
4 ,

H11 = 3K 23 − K 32 A − K mu2

. . . . . . . . .

0 A 0
4 , H12 = 3− K 33 A − K mu3

. . . . . . . . .

0 A G33
4 .
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