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Thermoelastic waves in an anisotropic infinite plate

Hussain Al-Qahtani and Subhendu K. Datta®
Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309-0427

(Received 25 March 2004; accepted 2 June 2004

An analysis of the propogation of thermoelastic waves in a homogeneous, anisotropic, thermally
conducting plate has been presented in the context of the generalized Lord-Shulman theory of
thermoelasticity. Three different methods are used in this analysis: two of them are exact and the
third is a semianalytic finite element meth@AFE). In our exact analysis, two different approaches

are used. The first one, which is applicable to transversely isotropic plate, is based on introducing
displacement potential functions, whereas in the second approach, which is applicable to any
triclinic material, we rewrite the governing equations and boundary conditions in a matrix form.
Finally, in the SAFE method, the plate is discretized along its thickness uirmarallel,
homogeneous layers, which are perfectly bonded together. Frequency spectrum and dispersion
curves are obtained using the three methods and are shown to agree well with each other. The effects
of thermal relaxation time and coupling term are also investigated. Numerical calculations have
been presented for a silicon nitrid&i;N,) plate. However, the methods can be used for other
materials as well. @004 American Institute of PhysidDOl: 10.1063/1.1776323

I. INTRODUCTION application of a thermal disturbance in a body instanta-
neously affects all points of the body. This assumption of

During the second half of the 20th century, nonisother-nfinite speed is contrary to physical phenomenon. To re-
mal problems of the theory of elasticity have been investiqye this paradox inherent in the classical theory, a theory
gated extensively. This is due mainly to their many applica-¢ generalized thermoelasticity was developed. This general-
tions in widely diverse fields. First, in the field of ized theory accounts for the short time required to establish a

nondestructive evaluation, laser-generated waves have 6g[feady state heat conduction when a temperature gradient is

tracted great attention owing o their p(_)tential apphcatlon.tosuddenly produced in the solid. This short time is called the
noncontact and nondestructive evaluation of sheet materialai . . .
ermal relaxation time. The concept of generalized ther-

Second, the high velocities of modern aircraft give rise to . ) .
aerodynamic heating, which produces intense thermarlnoelasticny has led to a wide range of extensions of the

stresses, reducing the strength of the aircraft structure. Thirglassical theory of thermoelasticity. Various generalization

in the nuclear field, the extremely high temperatures andiclude the following.

temperature gradients originating inside nucleai reactors i) Thermoelasticity proposed by Lord and Shulman in
fluence their design and operaticanoreover, it is well 1967 (L-S mode],4 in which, in comparison to the
recognized that the investigation of the thermal effects on
elastic wave propogation has bearing on many seismological
and astrophysical problems.

Most materials undergo appreciable changes of volum
when subjected to variations of the temperature. If thermal
expansions or contractions are not freely admitted, tempera- )
ture variations give rise to thermal stresses. Conversely a tiqns for t_he stres_s tensor f"md the entropy are gener-
change of volume is attended by a change of the temperature, ~ &/1z€d by introducing two different relaxation times.
When a given element is compressed or dilated, these vollil) ~ Thermoelasticity without energy dissipation, proposed

classical theory, the Fourier law of heat conduction is
modified by taking into consideration a single relax-
ation time.

i)  Thermoelasticity introduced by Green and Lindsay in
1972 (G-L mode),5 in which the constitutive rela-

.. 6 -
ume changes are accompanied by heating and cooling, re- Py Green and Naghdi in 1992G-N mode},” in
spectively. The study of the influence of the temperature of which, the Fourier law is replaced by a heat flux
an elastic solid upon the distribution of stress and strain, and rates-temperature gradient relaxation.

of the inverse effect of the deformation upon the temperature o .
distribution is the subject of thermoelasticity. These generalization are the most important ones. For

The classical theory of heat conduction in solids restsOther variations, one can refer for instance to Hetnarski and

7
upon the hypothesis that the flux of heat is proportional tolgnaczi<. _ _
the gradient of the temperature distribution. As a conse- Guided thermoelastic waves were considered by several

quence of this hypothesis, the equation is governed by aesearchl%rs. Nayfeh and Nemat-Nasdinha and Sinh&,
parabolic partial differential equation, which predicts that theAgarwal,'® Sherief and Helmy, and Abd-alla and Al-dawy?
studied isotropic thermoelastic Rayleigh waves. Massilas,

. . 4 .
3Author to whom correspondence should be addressed; electronic maiPa'maqua_ and Na'Oth' Mass_alas and Kalpaki_dig,
dattas@spot.colorado.edu Sharma, Singh, and Kumét,considered the propagation of
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IZ zy € =%(ui,j+uj,i)v 5

g + 700 =~ K;; T (6)

| In the above equations, a comma followed by a suffix de-
- notes spatial derivative and a superposed dot denotes the
I derivative with respect to time.
Various physical variables and material constants ap-
FIG. 1. Geometry of the problem. pearing in the above equations are the followiiag, the
components of stress tensgy; the components of heat flux

guided thermoelastic waves in an isotropic plate. Sharma an¢ector; €;, the components of strain tenspt;mass density;
Sharmd’ studied the free vibration of a thermoelastic cylin- Kij, the coefficients of thermal conductivity;time; ¢y, the
drical panel. elastic constantsy, entropy densitys;;, the thermal coeffi-

In contrast, little work has been reported on thermoelascients;Ceg, the specific heat at constant deformation; T, tem-
tic waves in anisotropic plates. The main focus of our workPerature perturbationy, thermal relaxation timey;, the
will be on the laser-generated waves in thermoelastic anisgzomponents of displacement vectdy;, reference tempera-
tropic plate. As mentioned above, the technique of laserture (i,j,k,1=1,2,3. Itis assumed thdl/To| <1.
generated waves has potential application to noncontact and In transversely isotropic material and assuming thakthe
nondestructive evaluation and characterization of sheet maXis is the axis of symmetry of the material, the stresses can
terials in industry. It was demonstrated that the thickness ope written in terms of the displacements and temperature
and moduli of thin plates can be measured experimentallyariation as
using laser-generated wavsin the first part of our work,

dispersion relations for thermoelastic anisotropic plate will 7~ Crall+ Caaty + CooW 2~ BT @)
be studied. These relations are investigated first because of
their importance in calculating elastic and thermal properties ~ Oyy = CioUx + CogU y + CoaW =~ By, T, (8)
of materials. Moreover, using dispersion relations, it is then
possible to analyze transient response of a plate heated by a o,,=cjUy+ Covy + CoW, = By T, (9)
laser pulse which will be the subject of our future investiga-
tion. The study is carried ogt _in thg con_text of Lord-_ShuI_man Ty2= Casv 1+ W), (10)
(L-S) theory of thermoelasticity using single relaxation time. ' '
Two different methods have been used to model the problem.

Oxz= C55('»',2 + W,x)r (17)

The first is an exact analysis using two different approaches
(Secs. 1A and IlA3 and a semianalytic finite element

method(SAFE) (Sec. Il B). Numerical results and discussion Tyy=Cos(Uy +0 ), (12
are presented in Sec. lll. This work concludes with a discus

sion of possible future work. where

_1
Cas=5(Co2— Cp3)

Il. THEORETICAL FORMULATIONS q
an

We consider an infinite homogeneous transversely iso-
tropic thermally conducting elastic plate at a uniform tem-  Bxx= Cratxx+ 2C120yy,  Byy= Crattx+ (Co2+ Cog) vy,
peraturely in the undisturbed state having a thicknessee (13)
Fig. 1. The motion is assumed to take place in three dimen-
sions(x,y, ). The displacements in the y, andz directions ~ Here, a,, and «, are the coefficients of linear thermal ex-
areu,v, andw, respectively. pansions ik andy directions, respectively.

By substitution of the foregoing expressions into Egs.
(1)—(6), one can write the governing equations in terms of
displacement and temperature,

In the absence of body forces and internal heat source . N
the generalized L-S thermoelasticity governing equations arBxt GV xy T ik

A. Exact analysis

oij ;= Pui , (1) + C55(u,yy + U,xy) + C55(u,zz+ W,xz) - BXXT,X = Puv (14)
Gij=- Top7, (2) C55(u,><y + U,xx) F Cpolxy + CooU yy T CoaW y,
+ Ca4(V 52+ W) = By T y = pU, 15
gij = Cij &~ Bij T, (3) vzt W) = ByyTy=p (19
) ) pCe - C55(u,xz+ W,xx) + C44(v,yz+ W,yy) + CpoUx;
pn=Bje+—T, (4) o
To + Coglyz+ CoW 77— Bny,z = pw, (16)
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TABLE I. Some numerical constants for different materials.

Material v,m/s km?/s B €

Aluminum alloy 3.88x 10° 1.02x 101! 1 1 2.56x 10°
Zinc 477X 10° 4.45x 10° 1 0.882 2.16< 107
Silicon nitride 1.34< 10% 2.58x20° 0.786 0.843 2.4910°

Kox T xx t Kny,yy + Kny,zz_ PCE(T + TO.T.-)
= To[ﬁxx(u,x + TOU,X)

+ Byy(Vy + 700 y) + Byy(W o+ W) ]. (17)

introduced to solve the above exact formulation.

1. First approach

For convenience, the asterisk will be suppressed from

Note that Eq.(17) reduces to the classical coupled ther-now on. The displacement can be written in terms of three

moelasticity equation for heat conductionsif=0.
We define the following nondimensional quantities:

2

v [ U v
X*:—XX, y*:_xy, Z*:—XZ, t*:—xt,
Ky Ky Ky ky
03p U3p
u* = ——u, v =——uv,
I(xBxxTO kXBXXTO
3
. Uyp T
w=——w, T*=—
I(x:BxxTO TO’
_Ci2 _Cs5 _C» _Cy3
Cl__! 2= C3__! CA__I
C11 C11 C11 C11
C, — Klfl'
Cszﬁ, 5=Cl+02, :EXY, K= ,
C11 Bxx Kxx
2 3
L &T BT o
0 - 01 2 H
Ky pCeuy

where v,=vVcy41/p is the velocity of compressional waves,
k=K, pCg is the thermal diffusivity in the direction, and

e is the thermoelastic coupling constant. Using the abové
nondimensional quantities, the governing equations are now

written as
Uxx ¥ CaU xy + Wy, + Cz(u,yy+ U,xy) + CZ(U,ZZ+ W,xz) -Tx=1,
(18)

CoUyy+ U x) + Calyy + C3v gy + CaW y, + C5(v 1+ W) = BT

=7, (19)
CoU iz + W) + Cs(Uy, + Wyy) + Col i+ Ca0 yp + CaW 5,

- BT, =, (20)
Tt KT gy + KT 5= (T+ 75T) = el (U + 7o)

+ B0y + o) + BOW,+ )], (22)

Generally, the coupling terra is small for most materiafs’

Table | gives numerical values of some constants for three

potential functions as in Buchwafliin the form

90
=— 22
u=—" (22
b ov
u=—+—, (23)
dy 9z
Jb 9
w=— - —. (24)
dz ay

Eliminating the displacements from the equations of mo-
tion produces

P P
S +CV2- — |V2¥ =0,
[Czaxz SV e

(29
5ﬁzvz¢+{czvz+é—é}—£§:o, (26)
X axs  Jdt° | dx dX
5%#@ + {cgvh czj—; - a&—;]v% -BV2T=0, (27
[;—;(é +700) + BVA(D + Tods)} - g - KV2T

+(T+7T) =0, (28)

where

s

97

It can be noted that the first equation is decoupled from oth-
ers. Since we are interested in propagating waves in the
plane ofx,y, potentials and temperature are written in the
form

L

V2 + .
ay?

= gy (z)@ &yt (29
O = g,(z)e+ey-ed, (30)
T=gy(2)e W&oy, (31
W = gy(2) €, (32)

different materials, namely, aluminium, zinc, and silicon ni- wherek, ¢ andw are, respectively, the nondimentional wave
tride. In the following two sections, two approaches will be number in thex direction, the nondimensional wave number
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in they direction, and nondimentional frequency.

By substitution of these assumed potentials into(28),
we get a second-order ordinary differential equatioy.i(z)
and a second-order system of differential equation;i(z),

0-(2), andgs(2). It can be shown that the solutions have the

following forms:

01 = F18); + GO + Hy (g, (33
02 = F20; + Gp(0; + Hyg, (34)
03 = F3(); + G5y + Hyls, . (35
02 =F4Qdy. (36)
Here,
Q, = B @517+ BgsuH?, 37)
O, = By €52 + B,,e%2H2) (38)
Q3 = By €57 + Bo,e%H2) (39
Q4= By €7 + By H2, (40)

Using Egs(29)—32) and the expression fa;(z), g.(2),
andgs(2) in Egs.(25)—28), we get for nontrivial soltion

(.L)2 - C2k2 - C5§2
=/ ——————>2>
Cs

and the determinant of the following matrix must vanish,

(41)

- X - K2+ o? - X -1
- 5k2 _CSX_C2k2+ (1)2 —E ,
ek ESTX K2+ KX -7
(42)
where
X=(?+€?)
and

7=(iw+ Tw?),

ands is the nondimensional wave number in thdirection.

This results in the following cubic equation:
X+ A+ AX+A;=0, (43

whereA,, A,, andA; are defined in Appendix A. Solving Eq.
(43) yields the following three roots fog*:

. SN
3 3(Y + \“”4A3+ Y2)1/3
, (Y +VaASY2)1e

— , 44
332 “4

H. AL-Qahtani and S. K. Datta

go_p B (1+iV3A)
B 3 3%2(Y +4A3+YD)IR

L (L-iV3)(Y +4AT+ YD)

v
2o p P (1-1\3A)
3 3%6(Y + Vy’4A3+Y2)l/3
_ —
1+iV3)(Y + V4A3 + Y3
_ A+ v ) , (46)

632

where A=3A,-A? and Y=-2A3+9AA,-27A;. The con-
stants appearing in EqE3)—(36) may be taken as shown in
Appendix A. Now, the temperature gradient and the stresses
of interest are

07;= M DV, (47)
oy, = My,Dv, (48)
ay,=myDv, (49
T,=m+Dv, (50

where the row vectorm,, m,, my, andmy are defined in
Appendix A. The matrixD is a diagonal matrix such that

diad D]
= [€51%, &527, gis3?, g2, gisa(H-2) gisa(H-2) gisy(H2) gir(H-2)]
(51)
and the generalized coefficients vector can be written as
V={B11 By B31 B41 B12 B2, B3y Bug} ' (52

The boundary conditions are that stresses and temperature
gradient on the surfaces of the plate should vanish. Hence,
we demand that

(53

T,=0,=0,4= Oy = 0.

Using boundary conditiong3) in the resulting stresses and
temperature gradient yields eight equations involving the
vectorv. In order for the eight boundary conditions to be
satisfied simultaneously, the determinant of the coefficient of
the arbitrary constants in E¢62) must vanish. This gives an
equation for the frequency of the guided wave for a given
wave number.

2. Second approach

For an infinite plate one can use Fourier transformation
in space and time domais represented by the following inte-
gral:

(i)(k,g,z;w):J J f d(x,y,z;t)e0+&y-eDgy dy dt

(54)

Here,k,¢ are the wave numbers inandy directions, respec-
tively, and w the circular frequency. Applying the Fourier

Downloaded 22 Jun 2005 to 212.26.1.29. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



J. Appl. Phys., Vol. 96, No. 7, 1 October 2004 H. AL-Qahtani and S. K. Datta 3649

transformation54) to the governing equations will yield the
following eigenvalue problem:

[AlS,=[BIS, (55)

wereS,=dSdz and

S =[U0WT &y by 0, T (56)
The general solution can be obtained by determining the eigenvalues and the eigenvectors(58).Bdere S is the
displacement-temperature-traction vector and matrices A and B are defined as

-1
- ¢4
—cs
-C . . . Coe
Al ek 1. (57
iC & . 1L
1.
I Ber - K|
- ) 1.
ick iCé : -8 |
icsé . . -1
. . icok . -1 . .
Bl et c,2-? kicitcy) . ik A | (58)
ké(cy +c)) ok + e — w® iEg
-w? . —-ik —i¢& .
_—iskT _iEST . k2+E§2—7- ) ]
where 7=iw+ row?.
The general solution to E@55) can be written as
S(2) =[QEKC}, (59
where Q is the resulting eigenvectors matrix from Egp), C are generalized coefficients, and E is a diagonal matrix,
E = diag €2, 6522, 5%, g5, gs1(H-2) gisa(H-2 gisa(H-2) gisy(H-2)], (60)

where 1, ...,4%,,(p=1,2,3 are the resulting eigenvalues of B. Finite element method

the characteristics equatios5), with Im(s;) =0. The first

four elements of Eq(60) represent the wave propagation

along the positivez axis, while the last four elements repre-

sent the wave propagation along the negatiis. {o}=[CKe} - {BIT, (61)
The boundary conditions are that tractions and tempera-

ture gradient in the direction on the surfaces of the plate

should vanish. Applying these boundary conditions yields

the dispersion relation for the infinite plate. pn={B"e} + pT_CET, (62)

0

We rewrite the governing equations in vector form,
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{a} + rofa} = ~[KKT'}, (63) NZ" = {N;N2N3}. (67)

whereT'=T. Nodal displacements and temperatures are stored in the two
The plate is divided intd\ parallel, homogeneos, and vectorsu® and #°, respectively. Using generalized linear ther-

anisotropic layers, which are perfectly bonded together. Amoelasticity the strain tensor and temperature vector is de-

global rectangular coordinate systef®,Y,Z) is adopted rived from the kinematic equaitons,

such thaiX andY axes lie in the midplane of the plate, aid

—_ e e e
axis parallel to the thickness direction of the plate. To ana- €~ Diut Doty + Dl (68)
lyze the guided wave propagation in such an infinite plate, , e e e
we discretize the thickness of the plate using three-noded bar TT =BT+ BoT )+ BsT, (69)

elements, each of which has associated with it a local coofwhereB,, B,, B3, D1, D,, andD; are defined in Appendix B.

dinate axegXx,y,z), which are parallel to the global coordi- The variational forms of Eqg68) and (69) are
nate axes. _ e e e
Two sets of shape functions are introduced to approxi- de=D;ou,+Daduy + Dadur, (70

mate the displacement and temperature fields on the element

level ST’ =B 8T S+ B,oTS, +B3oT®, (72
u(x,y,z,t) = NS@UEx, Y, 1) (64) Considering the body forc#, the virtual displacement
T ! M principle can be written as the following form:
T(xy,z0) =N T Y1), (65) ! .
? f f [6eTo— ST'TKT' = 6T'T(q; + 7o0)]dV dit
where tg JV

N, O O NyO O Ny O O _ftlf&ﬂf oyt 72
Ne=[0 N, O O N, O O Ng O (66) "to\,(””) ' (72)

0 0 N O 0 N0 0 N Substituting the constitutive relations, Eq$1)«63), into

and the variational form, Eq(72), leads to the following terms:

ty ty
f J SeTodV dt = f f SeT(Ce — BT)dV dt
tg JV o JV

0
ty
= f f [(8uD] + 8u$D3 + 8ueTD3)C(D; 8uS + D,oduS, + D3ou®) — (u§/D +usD;
+u®TD]) ANSTe]aV dt
ty
) f f f QUET[= KU Sk TGy = KTl — KBaUSy = K5y = Kaauy + KGuuS + kST + kSaugy
tO yJX

+Kioa TS+ kﬁmT?y = kioaT SJdx dy df, (73

where the elemental matrices appearing in the last equation 1

are defined in Appendix B. The second term in E£2) can :ff f ST (. T+ 0S.TC - C.TOdx dv dt. (74
be written as s (9117 St 922 vy~ Y3sT 9)dx dy dt, (74)
to

whered;4, 0,5, andgss are defined as

ty

STEN'K(T®'dV dt
tf fv o51= J BiKB.dz, g5,= f BJKB,dz,
0 z z
ty
- 5Te TBT+ 5TeTBT+ 5TeTBT
ffv( TR d ggszf BIKB dz.
to z
XK(B1T5+BoTS +BsT9dV dt The third term of Eq(72) is
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ty

f J (TN (q + 7q)dV dt
\Y

to

ty

:—ff STEN(q" + 700")dV dt
\

to

5]

= f f ST (Topn + TTop7)aV dt
v
t

0
ty
_ f f f STET (150, + 150, + £50s° + mS,T)
y X
to

+ 7o(f10 + F,U8 + F5+ m®,T)dx dy d, (75)
whereq’=q; and
ms,= | NeNgTaz, 2= [ ToNgaD.0z
z z
fngTo gBDde, f§=fTON§BD3dZ
z z
The right-hand side of Eq.72) is written as
ty
f f Su'(f - pldV dt
\%
to
ty
= f J SUSTNET(f — pNSGS) AV dit
to v
ty
= f J f SueT(fe - meii®)dx dy dt, (76)
yJX
to

where

fe= f N$Tfdz, m= f pN§NSdz.
z z

Equating the coefficient ofu® in Eq. (72) to zero yields
11U+ KU S+ KTuS + K3,uSy, + KouSy + k3uf

= k31U — k3uS, = k33u® = Ko TS = KiozT 5 + KioaT ©

-mi€=0. (77)
Similarly, equating the coefficient afT€ in Eq. (72) yields
oM TS+ M, T e+ rofSUS + 7ofSii°, + 7ofSU° + FSUS,

+ 1505+ 150° = 07y T S = 05T 5y + 95T = 0. (78)

Rewriting the last two equatiorj&qgs.(77) and(78)] in vec-
tor formats yields

H. AL-Qahtani and S. K. Datta 3651
a° U Uy
[-M 0]y [ +[Kqp i 0] - [ +[Kyp+ Kpp i 0]y -
Te TS« T?xy
us Uy
+[Kig=Kgp i =Kpoaly oo [ +[Kpi O]y -+
e e
>T’X: T’yy)
e
uy u®
+[Kos=Kap i =Kpool} [ +[= Kz i Kpgal| =+ [ =0.
e e
\T,y, | T
(79
and
.
ue us, as,
[7oF3 i moFgely " (+[mF1:0]) " [ +[7F2: 0]}
f° i 5
us Ui, ue
#[Fy O] - p+[Fot OF = (+[Fat Mgl
(T Ty T®
U Uy
+[0:=Gyq]y = (+[0: =Gy} -+ (+[0:—Gggl
T:EXX Ti’y
ue
X =0 (80)
Te

We assemble the element matrices into the global matri-
ces in the standard manner to yield the equations of motion,
HoV + HoV o+ HaV y+ HoV o+ HeV  + HeV + HoV

+H8V,Xy+ H9V1yy+ Hlov’x"' H11V'y+ H12V:0, (81)

where the matricesl; are defined in Appendix B andl is
the column vector of assembled nodal displacements and
temperatures.

For a wave propagating in th€Y plane, we take the
Fourier transform ot/ (X,Y,t) as

w o ®

\7(kx7ky’“’):f f f V(X,Y,he®xH¥-e0gx dy dt

(82)

Applying the Fourier transform to E@81) leads to the fol-
lowing expression:

[w?H | +iw’kH,+ iwzkyHg— wkH,— wkHs +iwHg
+K2H 7 + kkHg + KeHo — ikyH 19— ikyH11 — HiolV = 0,
(83

wherew is the circular frequency arkj, andk, are the wave
numbers in theX andY directions. For wave propagating in
arbitrary direction in they plane making an anglé with X
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TABLE II. Physical data for SN,.

Quantity Units Numerical value
p kg/m® 3.20x 10° 4
Ci1 N/m? 5.74x 101t

Cio N/m? 1.27x 10"

Coo N/m? 4.33x 101

Co3 N/m? 1.95x 10

Css N/m? 1.08x 10%

To K 296

Bax N/m? K 3.22x10°

Byy N/m? K 2.71x10°

Ce Jlkg K 0.67x 10°

Ko W/m K 55.4

Kyy W/m K 435

£ 2.49x 1073
axis i.e.,ky=k cos 6, andk, =k sin 6, Eq. (83) is written as

(K%M +KkC +K)V =0, (84)

wherek is the wave number of the wave in the propagation
direction, and

_ . _ y= =% (89)
M = - cog6H, - cos @ sin OHg — Sirf6H,, (85) V3
_ Using this approximation, the dimensional relaxation time is
C=-iw’cosfH,—iw’sin # Hy+ w cos OH, obtained as

+ w sin BHg+i coSOH o+ sin OH 14, (86) 3K

= X (90)

_ CECll
K=-w’H;—iwHg+Hp,. (87)

Hence, for silicon nitride, 7, is approximately 4.322
Solving the eigenvalue problem represented by®d)  x1023s (7,—nondim=3.0. Prevost and T&8 and
will determine the dispersion for guided thermoelastic wavehadrawi, Al-Nimr, and Hammad approximated the relax-
in infinite plates. ation time by restricting the speed of the thermal wave to be

Ill. RESULTS AND DISCUSSION

With the view of illustrating the numerical results ob-
tained by methods presented in the preceding sections, th
material chosen for the plate is silicon nitrid8i;N,), the 3
physical data for which is given in Table Il. Elastic stiffness
constants can be found in Ref. 21, whereas thermal proper 25}
ties are collected from Swifet al,? Kitayamaet al,?® and

Yakota and Ibukiyam4’ Y,
The dimensional speed of the thermal wave in xrai- E
rection for unbounded medium is 15l

I<XX
y= . (88) 1t
pCeTo

We recall that the relaxation timg is introduced to account 0.5¢
for the finite speed of thermal wave. To the best of our ,
knowledge, no experimental values fag have been re- 00' : : : ' . : ‘ : :
ported. However, some researchers suggested different way
of calculating it. Chestér approximates the speed of the

thermal wave according to the following equation: FIG. 3. Top view of frequency spectrum.
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FIG. 4. Front view of the spectrum.

equal to the speed of the longitudinal wave giving the fo
lowing formula for the relaxation time:

I‘<XX

==, (9D
CeCny

70

This gives a valuer, to be 1.44x10*3s (7,—nondim

H. AL-Qahtani and S. K. Datta 3653

TABLE Ill. Representive values df at w=3.00, with 7,=3.0.

Re() Im(¢)
7.4603 3.770k 10°
6.9277 0
6.0917 0
3.0555 0.4783
2.8532 0.0146
2.8093 0.0013
2.1112 0
1.5155 0.9932
0.8800 3.548% 10*

space. In order to find the solutions of the characteristic
equation(53) of the exact analysis, Muller's method is used
to solve it as an analytic complex function. The relations
between the frequency and the wave number expressed by
the characteristic equation yield an infinite number of
branches for an infinite number of elastic and thermal modes.
The dispersion curves of first few modes have been com-
puted and represented graphically in Figs. 2-5 for wave
propagation along the x axis, i.@50. The first figure shows

|- 3D view of the frequency spectrum, respectively. Elastic
modes resemble those of isothermal case since the coupling
parametet for SisN, is quite small. Similar to the isother-
mal case, a complex branch is s&€€ig. 4) originating from
the minimum point on the second longitudinal mode. More-
over, note that Oth-order elastic modes propagate at all fre-
guencies, but the higher order modes have cutoff frequencies

=1.0 for silicon nitride. The two cases will be considered in below which they are evanescent. Since the propagation di-

our analysis.

rection is along a principle direction, it is seen that the hori-

Numerical results are presented in the form of threezontal sheaSH) modes are uncoupled from the other two
dimensional view of frequency spectrum. These are obtainethodes. This is evidenced by the intersection of the SH wave

by keepingw real and lettingk to be complex. Then, the
phase velocity is defined as=w/Re(k), and the imaginary

curves with those for the S and A waves.
The first thermal mode shows a similar behavior as the

part of thek is a measure of the attenuation of the wave inlowest elastic modes; however, it shows very high attenua-

FIG. 5. Right view of the spectrum.

FIG. 6. Frequency spectrum using SAFE.
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FIG. 7. Coupling effect on frequency spectrum. ()

FIG. 9. Dispersion curves alongF45°.

tion compared to elastic modes. Other thermal modes origi-
nate with higher imaginary values of wave numbers andand efficient technique for analyzing thermoelastic problems.
eventually approach the first thermal mode. In order to sednother advantage is the ease with which layered plates can
the attenuation associated with thermal modes and somnfee considered.
elastic modes, we pick some numerical values from the fre-  In order to see the effect of the coupling term in the heat
quency spectrum as shown in Table IIl. It is observed thagquation, the frequency spectrum was computed for two
some elastic modes exhibit attenuation expressed by theases, namelye=0 and e=2.94x 1073, The corresponding
imaginary value of wave numbers. Points where the imagifrequency spectra are plotted in Fig. 7. The figure shows that
nary values are relatively high correspond to thermal modeghe two spectra are undistinguishable, therefore the coupling
Frequency spectrum was also computed by the SAFEErm may be neglected without affecting the results. Doing
method and graphically shown in Fig. 6. Excellent agree=s0 simplifies the exact analysis considerably because the heat
ment between SAFE and analytic solution results is observe@iduation gets decoupled from the other elastic equations.
by comparing Fig. 6 with Fig. 2. Convergent results of SAFEHence Eq(43) becomes now quadratic instead of cubic.
analysis can be attained by relatively small number of ele- N Figs. 8-10 dispersion curvgsormalized phase ve-

ments(ten elementsindicating that the FEM is a powerful l0City vs normalized frequengywere computed and plotted
along different propagation directions, namely, 0°,45°, and

FIG. 8. Dispersion curves along=0°. FIG. 10. Dispersion curves alorgF90°.
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FIG. 11. The effect of relaxation timegy;=3.0, 79,=1.0.

FIG. 12. Top view of Fig. 11.

90°. The figures show the effect of anisotropy of the plate on

dlspgrsmn curves. For instance, the phase velocities of thl’?lcorporating two different solution approches and a SAFE
elastic and'ther.mal modes Qecrgase as the wave travels frOIWethod. The results obtained by these methods were found to
0° to 90° direction. For all directions, it is seen that all ther- agree very well.

mal modes except the lowest one start with a finite phase The results show that both elastic and thermal modes are
. - . o gltenuated, the thermal modes exhibit much larger attenua-
mode, which originates with vanishing phase speed. tion than the elastic modes. The attenuation of the former is

F!ne}lly, th? effect of relaxation time on frequency Spec'(}]uite small. The results agree with previous observations by
trum is investigated. Frequency spectrum was computed fOHawwa and Nayfeﬁ8

the two values of relaxation times that resulted from using The coupling term is generally small for all materials
the two different formulas Eq$90) and(91). Flgu.res 11 and and can be neglected. Neglecting the coupling term simpli-
12 show frequency spectra for the thermoelastic plate for th'ﬁes the analysis without noticeable effect on the frequency
two relaxation times. By examining the figure, it is noticed spectrum as we saw earlier

that influence of changing relaxation time was mainly on Because of the small relaxation time exhibited by the

thermal modes. Increasing the relaxation time causes thermﬁ'|aterials under consideration the thermal wave modes have

modes to have more attenuation. Besides, it results in fa%uch larger phase speeds than the elastic modes. The effect
convergence of higher thermal modes toward the lowest one;

. . f increasing the relaxation time is to lower the speeds of the
As expected, the velocity of thermal modes increases as tt}

laxation time d fiermal modes.
relaxation ime decreases. The effect of anisotropy of the material is quite pro-

V. CONCLUSIONS nounced on waves p_ropagatmg in dlff_erent dwec’qons along
the plate. Thus, it is important to consider the anisotropy of
Propagation of guided thermoelastic waves in a homothe material in order to accurately model the propagation
geneous, transversely isotropic, thermally conducting plateharacteristics for material characterization and transient re-
was investigated within the framework of the generalizedsponse.
theory of thermoelasticity proposed by Lord and Shulman.  While this paper dealt with the modal dispersion of
This theory includes a thermal relaxation time in the heaguided waves, the transient response of a plate due to a laser
conduction equation in order to model the finite speed of thepulse will be reported in a subsequent paper. The latter is
thermal wave. Three different methods were used to modehvestigated by using the modal sum and a fast Fourier
the guided wave dispersion. These include an exact analysisansform.

APPENDIX A: EXACT ANALYSIS

1 — J— — J— J—
—[(CyC3 + C3K + C3K — 6°K)K? = (C,C3 + Cp8e) T— (Cp + Cy)Kw?],
C,C3K

A]_:

Downloaded 22 Jun 2005 to 212.26.1.29. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



3656 J. Appl. Phys., Vol. 96, No. 7, 1 October 2004 H. AL-Qahtani and S. K. Datta

1 J— J— J— J— J— J—
—[(C3+ g+ CK — )K* + (6% + 288 — C5 — C3 — Cge + BPe) T2 — (Cp + G + K — CK)KPw? + (Cp + €3 + BPe) T
C,C3K

A2 =

+Ko?],

! —[(Ck® = (1 —g)cpk® — (1 — )k w? + (1 + ¢y + &) K2w? + (K2 = D],
C,C3K

F1=61=H1=F4=1,

_ (8- B+ Blw? - ey} + )]
D -k (Ca- BONE+E)

(K4S + &) — wPJ[Cok? + oSt + €2 — w?)] - PKA(SE + gz)
w® = k2 = (C5— 35)(§+ &)

3=

(5- B2+ Bl = cy(S+ )]

G,= — ,
2 Rk (Cs- BI(E+ D)

[k + ey + &) - w?][ck® + ca(Sh + €2 - )] - 52k2<§+§2>
* W — o~ (C3— B+ &)

(5= B+ Ble? - ey + )]
2— —
w? = k2 = (C3— BO)(S+ &)

KR+ cy(S3+ &) - o?I[Ck + cy(S3 + & - P)] - 52k2(§+§2)
w? = Ck2 = (Cg = BO)(E+ &)

\ -

3=

— C1KPF 1 = (CaST + C4€?)Fp — BF4
- ciK2G, - (Cs93 + 4G, - Gy
- cik?H, = (G35 + CaE)H, - BH,
CaréF 4= CayéF,
— CiK2F — (CoS} + Ca€A)F, — BF
~ C1K?*G; ~ (G355 + C4€9)G, - /8Gs
— C1kH, — (CoS5 + C4EIH, - BH,
\ CaréF4 = CayéF, y,

M,y = Co{— kS (F1 + Fp),— kSy(Gy + Gp), — ksz(Hy + Hyp) KéF 4, ks (F1 + Fp) k(G + Gy)  ksz(Hy + Hp), — kéF 4},
M,y = Cs{= 251€F 5, = 25,£G,, — 253¢H,, (£ — 1H)F 4, 25,€F 5, 25,£Gy, 2538H,, — (£ = 19)F},

my = {is;F3,iS;Gg,iS5H3, 0,18, F 3, — i5,Gg, — isgH3, 0} .
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APPENDIX B: FINITE ELEMENT MATRICES

N, N, Ny
B]_:
N, . . N,
D,=
Ny
N,
. N
D3= \ 1z
. 1z
Nl,z
f DICD,dz,
z

I
A

% D]CD4dz,

8= J DJCD,dz,
z

e f D3CD,dz,
z
f DiCD4dz,
z

, 82: Nl N2 N3 , B3: . . . s

e
327

€= f DJCBNSdz,
z

Nl,z N2,z N3,z

f DJCD4dz,
z

D;CD,dz,

h

= f D]CBNS'dz,
z

€ s= f DiCBNSTdz,
z

[~ M 0 0 0
Hi= , Ho=| ... )
ToF3 oM g ToF1 0
0o : o0 0 : 0
H3: , H4: ,
TOF2 0 Fj_ 0
(0 : 0 0 : 0
H5: , H6: T
Fz O F3 Mﬁg
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K1 0 Kt Ko 0
H7 = , H8: ,
L O _Gll O 0
Ky 0 Ki3=Kgap =Ko
Ho= , Hio= )
L 0 _G22 O 0
K2z— Kz Kmez —Kas = Kmes
Hl].: e e e y le—
0 0 0 Gas
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