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Abstract

Laser pulse heating of solid surface and entropy generation during the heating process are considered. Time exponentially decaying

pulse is accommodated in the analysis and the laser pulse parameter (b1/b2) resulting in minimum entropy generation rate is computed.

Analytical solutions for temperature rise are presented and volumetric entropy generation rate is formulated. Two laser pulses resulting

in low volumetric entropy generation rate are examined in detail and volumetric entropy generation rate is associated with the laser pulse

parameter (b1/b2). It is found that volumetric entropy generation rate attains high values in the early heating period due to large (1/T 2).

Moreover, the laser pulse with high-peak intensity results in lower volumetric entropy generation rate than that corresponding to the

low-intensity laser pulse with the same energy content.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Laser pulse heating of solid surfaces finds application in
metal industry due to rapid processing, precision of operation,
and local treatment. In this case, the depth of annealed surface
as shallow as a few mm to a fraction of mm can be achieved.
Analytical modeling of the heating process provides closed
form solution for temperature rise in the irradiated region.
This, in turn, enables one to optimize the process parameters
to reduce the experimental time and cost. The thermodynamic
irreversibility in the thermal system lowers the second law
efficiency and gives insight into the thermal quality of the
process. Moreover, thermodynamic irreversibility can be
quantified through entropy generation rate. Minimum en-
tropy generation rate can be considered to be a key issue for
the efficient thermal processing. Consequently, entropy
generation rate can be minimized and laser pulse parameters
resulting in minimum entropy generation rate can be identified
for the efficient heating process. Therefore, investigation into
entropy generation rate and identifying the laser pulse
e front matter r 2007 Elsevier Ltd. All rights reserved.
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parameters minimizing entropy generation rate during the
laser heating process becomes essential.
Considerable research studies were carried out to examine

analytically the laser heating process. Ready [1] introduced
analytical solution for a constant intensity laser pulse heating
process. The closed form solution was limited with the
constant intensity pulse applications. Yilbas [2] obtained a
closed form solution for temperature rise during the laser
heating process using the Laplace transformation method. His
solution was also limited with the constant intensity pulse
applications. Blackwell [3] provided analytical solution for the
laser heating process. The closed form solution assumed
exponentially decaying pulse and pulse variation including
intensity change was neglected. Time exponentially varying
pulse was considered by Yilbas [4] and the exact solution was
obtained using the Laplace transformation method. However,
the pulse optimization for efficient processing was left obscure
in the study. Analytical model for laser pulse heating of
embedded biological targets was presented by Mirkov et al.
[5]. They developed a mathematical model for the laser-
induced heating and cooling processes.
Laser pulse heating and entropy generation was inves-

tigated by Yilbas [6]. He formulated entropy generation
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Nomenclature

CP specific heat (J/kgK)
I0 laser peak power intensity (W/m2)
k thermal conductivity (W/mK)
Q heat flux (W/m2)
rf reflection coefficient
t time (s)
T temperature (K)
T1 temperature for first laser pulse parameter

(b1) (K)

T2 temperature for first laser pulse parameter
(b2) (K)

_Sgen volumetric entropy generation rate (W/m3K)
_S
�

gen dimensionless volumetric entropy generation
rate

U internal energy (J/kg)
x spatial location (m)
a thermal diffusivity (m2/s)
b laser pulse parameter (1/s)
d absorption coefficient (1/m)
r density (kg/m3)

x - axis

Laser Beam

x = 0 : Free Surface

Fig. 1. Schematic view of laser heating and x-axis location.
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rate and computed numerically during the heating and
cooling phases of the laser pulse. Entropy generation rate
during laser short-pulse heating was also examined by
Yilbas [7]. He introduced entropy production rate due to
thermal coupling of electron and lattice sub-systems. The
irreversible thermodynamic analysis for thermal conduc-
tion was carried out by Jou and Casas-Vazquez [8]. They
indicated that the irreversibility analysis provided useful
information when the perturbation of the system were fast
enough so that their frequency become comparable to the
inverse of the relaxation times of the fluxes. However, in
the analysis optimization of heating was not included.

In the present study, laser pulse heating of solid surface
and entropy generation rate are considered. Time exponen-
tially varying pulse is accommodated in the analysis to
resemble the actual laser pulse and closed form solution for
temperature rise is presented. Laser pulse parameter (b1/b2)
resulting in minimum entropy generation rate is investigated.

2. Mathematical analysis

Mathematical analysis is composed of two parts, namely
heating analysis and entropy analysis. Each analysis will be
given under the appropriate subheadings.

2.1. Heating analysis

The schematic view of the laser heating process is shown in
Fig. 1. Since the spot size is small (o1mm) and the heat
transfer in the radial direction is considerably smaller than its
counterpart that takes place in the axial direction, one-
dimensional heating model can be considered [9]. Laser
heating pulse can be constructed from twotime exponentially
decaying pulses (exp ð�b1tÞ � exp ð�b2tÞ), where b1 and b2
are the laser exponential pulse parameters. The solution of
conduction equation (the Fourier equation) can be obtained
for only one exponential term (exp ð�b1tÞ) of the laser heating
pulse; then, the solution for the second exponential term can
be added to the solution of the first exponential term
according to the superposition role. Consequently, tempera-
ture variation for the complete laser heating pulse can be
obtained. In this case, the Fourier heat transfer equation due
to time exponentially decaying laser pulse for the first term b
(b is used for the general purpose and it will be replaced with
b1 and b2 later in the mathematical analysis) can be written as

q2T
qx2
þ

I1d
k
ðe�btÞe�dx ¼

1

a
qT

qt
, (1)

where

I1 ¼ ð1� rf ÞI0.

In the analysis, no heat convection is considered from the
free surface of the substrate material. It should be noted that
the convective heat loss from the surface is negligibly small
during the laser heating pulse [10]. The depth well below the
surface (xffiN), temperature remains the same. Therefore, the
corresponding boundary conditions are
at the surface:

At x ¼ 0)
qT

qx

����
x¼0

¼ 0.

at depth infinity:

At x ¼ 1) Tð1; tÞ ¼ 0.

Initially, substrate material is considered at uniform
temperature. Hence, the initial condition is

Initially : At t ¼ 0) Tðx; 0Þ ¼ 0.

The Laplace Transformation of Eq. (1) with respect to t,
results

q2T̄
qx2
þ

I1d
k

e�dx

ðsþ bÞ
¼

1

a
sT̄ðx; sÞ � Tðx; 0Þ
� �

. (2)
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Introducing the initial condition and rearranging Eq. (2)
yields

q2T̄
qx2
� h2T̄ ¼ �

I1d
k

e�dx

ðsþ bÞ
, (3)

where h2 ¼ s/a and s is the transform variable. Eq. (3) has
the solution:

Tðx; sÞ ¼ Aehx þ Be�hx �
I1de�dx

kðsþ bÞðd2 � h2
Þ
, (4)

where A and B are constants. Introducing the boundary
conditions will allow determining the constants A and B, i.e.

T̄ðx; sÞ ¼ �
I1d

kðsþ bÞ
d exp ð�hxÞ

hðh2
� d2Þ

�
exp ð�dxÞ

ðh2
� d2Þ

� �
, (5)

which gives the solution for temperature in Laplace domain.
The inverse Laplace transform of Eq. (5) gives the

temperature distribution inside the substrate material in
space (x) and time (t) domain as follows [4]:
Tðx; tÞ ¼
I1d
2k

a

bþ ad2

� � id
ffiffi
a
b

q
exp ð�btÞ

exp ix
ffiffi
b
a

q� �
Erfc x

2
ffiffiffi
at
p þ i

ffiffiffiffiffi
bt

p
 �

� exp �ix
ffiffi
b
a

q� �
Erfc x

2
ffiffiffi
at
p � i

ffiffiffiffiffi
bt

p
 �

2
6664

3
7775

þ exp ðad2tÞ
exp ðdxÞErfc x

2
ffiffiffi
at
p þ d

ffiffiffiffiffi
at
p
 �

� exp ð�dxÞErfc d
ffiffiffiffiffi
at
p
� x

2
ffiffiffi
at
p


 �
�2 exp ð�ðbtþ dxÞÞ

2
4

3
5

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

, (6)
where Erfc is the complementary error function. Eq. (6) is the
closed form solution for temperature distribution. The
temperature distribution in non-dimensional form is possible
by defining dimensionless quantities and substituting in Eq. (6).

The solution of complete laser heating pulse including
both exponential terms is

For b ¼ b1,
T1ðx; tÞ ¼
I1d
2k

a

b1 þ ad2

� � id
ffiffi
a
b

q
exp ð�b1tÞ

exp ix

ffiffiffiffi
b1
a

q� �
E

� exp �ix

ffiffiffiffi
b1
a

q� �
2
6664

þ exp ðad2tÞ
exp ðdxÞErfc x

2
ffiffiffi
at
p þ d



�

2
4

8>>>>>>>>>><
>>>>>>>>>>:

and for b ¼ b2:

T2ðx; tÞ ¼
I1d
2k

a

b2 þ ad2

� � id
ffiffiffiffi
a
b2

q
exp ð�b2tÞ

exp ix

ffiffiffiffi
b2
a

q� �
E

� exp �ix

ffiffiffiffi
b2
a

q� �
2
6664

þ exp ðad2tÞ
exp ðdxÞErfc x

2
ffiffiffi
at
p þ d



�2

2
4

8>>>>>>>>>><
>>>>>>>>>>:
Consequently, temperature variation for the complete
laser heating pulse is

Tðx; tÞcomplete pulse ¼ T1ðx; tÞ � T2ðx; tÞ. (7)

The following dimensionless parameters are used for
non-dimensionalized Equation (7):

x� ¼ xd : t� ¼ ad2t : b� ¼
b

ad2
: T� ¼

T

ðI1=kdÞ
.

Non-dimensional form of Eq. (7) is used to compute
temperature distribution inside the substrate material for
complete laser heating pulse.

2.2. Entropy analysis

Volumetric entropy generation rate in a thermal system
can be written as [11]

_Sgen ¼
1

T
rq�

1

T2
qrT þ r

DS

DT
, (8)
where

r
DS

DT
¼

r
T

Du

Dt
�

P

rT

Dr
Dt

.

Since the density remains constant for solids, the second
term in Eq. (8) reduces to zero (ðP=rTÞðDr=DtÞ ¼ 0).
rfc x
2
ffiffiffi
at
p þ i

ffiffiffiffiffiffiffi
b1t

p
 �

Erfc x
2
ffiffiffi
at
p � i

ffiffiffiffiffiffiffi
b1t

p
 �

3
7775

ffiffiffiffiffi
at
p �

� exp ð�dxÞErfc d
ffiffiffiffiffi
at
p
� x

2
ffiffiffi
at
p


 �
2 exp ð�ðb1tþ dxÞÞ

3
5

9>>>>>>>>>>=
>>>>>>>>>>;

,

rfc x
2
ffiffiffi
at
p þ i

ffiffiffiffiffiffiffi
b2t

p
 �

Erfc x
2
ffiffiffi
at
p � i

ffiffiffiffiffiffiffi
b2t

p
 �

3
7775

ffiffiffiffiffi
at
p �

� exp ð�dxÞErfc d
ffiffiffiffiffi
at
p
� x

2
ffiffiffi
at
p


 �
exp ð�ðb2tþ dxÞÞ

3
5

9>>>>>>>>>>=
>>>>>>>>>>;

.
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Fig. 2. Three-dimensional view of volumetric entropy generation rate with

pulse parameters b1 and b2.
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Fig. 3. Time exponentially varying pulses used in the simulations. Opt.

pulse has the high-peak intensity while Arb. pulse is the low-peak

intensity, provided that pulse energy for both pulses remains the same.
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Therefore, Eq. (8) becomes

_Sgen ¼
1

T
rq�

1

T2
qrT þ

r
T

Du

Dt
. (9)

The term ðr=TÞðDu=DtÞ in one-dimensional solid can be
written as

r
T

Du

Dt
¼

1

T
ð�rqÞ. (10)

Combining Eqs. (9) and (10) results in

_Sgen ¼
1

T
rq�

1

T2
qrT �

1

T
rqð Þ. (11)

However, q ¼ �krT . Consequently, re-arrangement of
Eq. (11) yields

_Sgen ¼
k

T2
rTð Þ

2. (12)

Non-dimensional form of Eq. (12) can be written as

_S
�

gen ¼
1

T�2
rT�ð Þ

2, (13)

where _S
�

gen ¼
_S
�

genð1=kdÞ.
Eq. (13) is used to compute dimensionless entropy

generation rate.

3. Results and discussions

Laser pulse heating and entropy generation rate for pulse
optimization are considered. The closed form solution for
temperature rise due to time exponentially varying pulse is
used to obtain temperature and entropy change in the
substrate material. The pulse parameter (b1/b2) resulting in
minimum entropy generation rate is obtained.

Fig. 2 shows a three-dimensional view of volumetric
entropy generation rate for three different time and space
domains. The x- and y-axes of the figure represent the laser
pulse parameters b1 and b2. In all time and space domains
considered in the present analysis, volumetric entropy
generation rate behaves in such a way that increasing both
b1 and b2 results in low entropy generation rate. Conse-
quently, for laser pulses resulting in low entropy generation
rate must have relatively large values of b1 and b2 pulse
parameters. This is mainly because of attainment of relatively
high temperature and low temperature gradients for large
values of b1 and b2 (Eq. (7)). Consequently, two values of
pulse parameters b1 and b2 are selected in accordance with
low entropy generation rate for further examinations.

Fig. 3 shows two laser pulses used in the simulations. It
should be noted that the pulse energy for both pulses
remains the same. Two pulses with different parameters
can be distinguished for their peak pulse intensities, i.e. one
pulse has higher peak intensity than the other, despite the
fact that both pulses have the same energy content. Fig. 4
shows temporal variation of temperature for two pulses
with different pulse parameters. Temperature rise is high
in the early heating period and the maximum surface
temperature occurs when the pulse intensity reaches its
maximum. However, temperature rise does not exactly
follow the laser pulse profile, which is due to diffusion and
energy transport from the surface region to the solid bulk.
This, in turn, lowers the temperature in the surface region.
The decay rate of temperature profiles corresponding to
both pulses are similar despite the fact that decay rate of
both pulses are notably different. This indicates that once
the temperature field is developed after reaching the
maximum temperature at the surface, diffusional energy
transfer from the surface region to the solid bulk becomes



ARTICLE IN PRESS

0.08

0.06

0.04

0.02

0

5 10 15 20 25 30

DISTANCE

T
E

M
PE

R
A

T
U

R
E

Opt Pulse
Arb Pulse

Fig. 5. Dimensionless temperature distribution inside the substrate

material for two pulses employed in the simulations.
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Fig. 6. Temporal variation of dimensionless entropy generation rate for

two pulses employed in the simulations.
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Fig. 7. Temporal variation of dimensionless temperature square at a

depth of x ¼ 1 for two pulses employed in the simulations.
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Fig. 4. Temporal variation of dimensionless temperature for two pulses

employed in the simulations.
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high for high-peak intensity pulse due to high-temperature
gradient developed in the surface region. It should be noted
that high-temperature gradient accelerates the diffusional
energy transport from the surface region to the solid bulk.

Fig. 5 shows temperature distribution inside the sub-
strate material for two pulses with different pulse
parameters. Temperature decays sharply with increasing
depth below the surface for both pulses, provided that
temperature gradient is high for the high-peak intensity
pulse. This, in turn, increases conduction from the surface
region to the solid bulk. In addition, absorption inside the
substrate material is governed by the Lambert’s law, in
which case, absorbed laser intensity decays exponentially
inside the substrate material. The decay of temperature in
the surface vicinity is smaller than that corresponding to
the region next to the surface vicinity. This is because of
energy gain from the irradiated field, which is high in the
surface vicinity, and low temperature gradient in this
region, which lowers the conduction loss from the surface
vicinity. However, as the depth below the surface increases
in the region next to surface vicinity, energy gain from the
irradiated field reduces, which in turn results in attainment
of low temperature in this region. This causes increase in
temperature gradient in the region between the surface
vicinity and next to the surface vicinity. Consequently,
temperature gradient becomes high and conduction losses
from the surface vicinity increases.
Fig. 6 shows temporal variation of entropy generation at

the surface for two laser pulses with different pulse
parameters. Both pulses result in similar entropy genera-
tion rate in the early heating period due to low (dT/dx)2,
which can also be observed from Fig. 7. As the heating
period progresses volumetric entropy generation rate
differs for both pulses and high-peak intensity pulse gives
rise to less entropy generation rate. This is because of the
attainment of high temperature and low 1/T2 (as seen from
Fig. 8). However, as the heating period progresses further,
the difference in volumetric entropy generation rate due
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to both pulses becomes large despite the fact that both
(dT/dx)2 and (1/T 2) become small for both pulses. This is
because of the difference in temperatures and the gradients
due to both pulses. In this case, temperature remains high
while temperature gradient is low for the high-intensity
pulse. Consequently, volumetric entropy generation rate
becomes lower for the high-peak intensity pulse than for
the corresponding other pulse.

Fig. 9 shows volumetric entropy generation rate inside the
substrate material for two pulses with different pulse
parameters. Volumetric entropy generation rate is low in
the surface region due to low 1/T 2 and (dT/dx). However, as
the distance increases away from the surface towards the
solid bulk, entropy generation rate increases because of
reducing temperature and increasing temperature gradient in
this region. As the depth below the surface increases further,
temperature gradient and temperature reduce significantly.
Moreover, entropy generation rate increases further with
increasing depth despite the attainment of the low-tempera-
ture gradient. The increase in entropy generation rate is
associated with temperature reduction with increasing depth,
i.e., 1/T 2 increases significantly with increasing depth below
the surface. Consequently, increase in 1/T 2 suppresses the
decay in (dT/dx) and results in high rate of volumetric
entropy generation at depth further away from the surface.
The difference in both entropy profiles due to two pulses is
evident. However, this difference ceases once the depth below
the surface increases further towards the solid bulk where
temperature becomes almost the same for both pulses.

4. Conclusion

Laser pulse heating is considered and volumetric entropy
generation rate is formulated. Time exponentially varying
pulse profiles are considered and the laser pulse parameter
(b) resulting in the minimum entropy generation rate in the
solution domain is determined. In this case, entropy field is
computed for various values of the laser pulse parameters
and two values of pulse parameters are selected for further
analysis. Temperature and entropy fields are predicted for
two time exponentially decaying pulse with different pulse
parameters. The energy content in both pulses is kept the
same. It is found that temporal variation of temperature at
the surface does not follow the laser pulse variation because
of the diffusional energy loss from the surface region to the
solid bulk. Surface temperature rises rapidly for the pulse
with high peak intensity. This results in rapid decay of
temperature in the cooling period. Temperature gradient is
low in the surface region due to internal energy gain from
the irradiated field and it increases sharply as the depth
below the surface increases towards the solid bulk. The
exponential pulse with high-peak intensity results in high-
temperature gradient in the region next to the surface
vicinity. Volumetric entropy generation rate attains low
values in the surface region and as the distance from the
surface increases it increases despite the fact that tempera-
ture gradient reduces. In this case, 1/T 2 amplifies volumetric
entropy generation rate. Volumetric entropy generation
rate attains high values in the early heating period because
of attainment of low temperature in this period. Volumetric
entropy generation rate due to both pulses differs in the
surface region as the heating period progresses. This is
because of the differences in temperature, i.e., 1/T 2 differs
for both pulses. The laser with high peak intensity results in
low-entropy generation rate, which in turn indicates the
possible attainment of efficient heating process.

Acknowledgements

The authors thank the King Fahd University of
Petroleum and Minerals.

References

[1] Ready JF. Effects due to absorption of laser radiation. J Appl Phys

1963;36:462–70.



ARTICLE IN PRESS
H. Al-Qahtani, B.S. Yilbas / Optics and Lasers in Engineering 46 (2008) 27–33 33
[2] Yilbas BS. Analytical solution for heat conduction mechanism

appropriate to the laser heating process. Int Commun Heat Mass

Trans 1993;20:545–55.

[3] Blackwell FJ. Temperature profile in semi-infinite body with

exponential source and convective boundary conditions. ASME J

Heat Trans 1990;112:567–71.

[4] Yilbas BS. Analytical solution for time unsteady laser pulse heating

of semi-infinite solid. Int J Mech Sci 1997;39(6):671–82.

[5] Mirkov M, Sherr EA, Sierra RA, Lloyd JR, Tanghetti E. Analytical

modeling of laser pulse heating of embedded biological targets: an

application to cutaneous vascular lesions. J Appl Phys 2006;99:

114701.
[6] Yilbas BS. Three-dimensional laser heating model and entropy genera-

tion consideration. ASME J Energy Resource Technol 1999;121:217–24.

[7] Yilbas BS. Entropy production during laser picosecond heating of

copper. ASME J Energy Resource Technol 2002;124:204–13.

[8] Jou D, Casas-Vazquez J. Extended irreversible thermodynamics of

heat conduction. Eur J Phys 1988;9:329–33.

[9] Yilbas BS, Sami M. Three-dimensional laser heating including

evaporation—a kinetic theory approach. Int J Heat Mass Trans

1998;41(13):1969–81.

[10] Shuja SZ, Yilbas BS. 3-dimensional conjugate heating of a moving

slab. Appl Surf Sci 2000;167:134–48.

[11] Bejan A. Entropy generation minimization. New York: CRC press; 1995.


	Entropy generation rate during laser pulse heating: Effect of laser pulse parameters on entropy generation rate
	Introduction
	Mathematical analysis
	Heating analysis
	Entropy analysis

	Results and discussions
	Conclusion
	Acknowledgements
	References


