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9.1 INTRODUCTION 
 

The term Frequency Response refers to the steady state response of a system to a sinusoidal 
input. 

An input ( )f t  is periodic with a period τ  if  ( ) ( )f t f tτ+ =  for all values of time t , 

where τ  is a constant called the period. Periodic inputs are commonly found in many 
applications. The most common perhaps is ac voltage, which is sinusoidal. For the common 

ac frequency of 60 Hz, the period is 
1

60
sτ = . Rotating unbalanced machinery produces 

periodic forces on the supporting structures, internal combustion engines produce a periodic 
torque, and reciprocating pumps produce hydraulic and pneumatic pressures that are 
periodic. 
 

Frequency response analysis focuses on sinusoidal inputs. A sine function has the 

form sinA tω , where A  is the amplitude and ω  is its frequency in radians/seconds. Notice 

that a cosine is simply a sine shifted by 90�  or 2π  rad, as 
2

cos sint t
π

ω ω = + 
 

 

 

9.2 SINUSOIDAL TRANSFER FUNCTION (STF) 
 

When a sinusoidal input is applied to a LTI system, the system will tend to vibrate at its own 
natural frequency, as well as follow the frequency of the input.  In the presence of damping, that 
portion of motion sustained by the sinusoidal input will gradually die out. As a result, the 
response at steady-state is sinusoidal at the same frequency as the input. The steady-state 
output differs from the input only in the amplitude and the phase angle. See Figure 9-1 below. 
 

Input

sinA tω����� ( )
Output

sin tX ω φ+
���������

 
Figure 9-1.  
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Thus, the output-input amplitude ratio and the phase angle between the output and input 
sinusoids are the only parameters needed to predict the steady state output of LTI systems 
when the input is a sinusoid. 

 

: output-input amplitude ratio

: phase angle between output and input

X

A
φ

  

 

Forced Vibration without damping Figure 9-2 illustrates a spring- 
mass system in which the mass is subjected to a 

sinusoidal input force ( ) sin
o

p t P tω= . Let us find the 

response of the system when it is initially at rest. The 
equation of motion is 
 

sinω+ =
�

��m x k x P t  

 

where x  is the output, P  is the amplitude of the 

excitation and ω  is the forcing (excitation) frequency. 

m

x

k

( ) sin
o

p t P tω=

 
Figure 9-2  Spring-mass system. 

The above equation can be written in the form 
 

 sinω+ = ���
k P

x x t
m m

 (9-1) 

 

where nk m ω=  is known as the natural frequency of the system. The solution of Equation 

(1) consists of the vibration at its natural frequency (the complementary solution) and that at 
the forcing frequency (the particular solution) as shown in Figure 9-3. Thus, 

 

( ) complementary solution particular solution= +x t  

 
Let us obtain the solution under the condition that the system is at rest. Take LT of both sides 

of Equation (9-1) for zero initial conditions, i.e., ( ) ( )0 0 0= =�x x .  

 

( )2

2 2

ω
ω

 + =  + 
�

k P
s X s

m m s
 

 

where ( ) [ ]( )X s x t= L . Substituting 2

nk m ω=  and Solving for ( )X s  yields 

 

( )
2 2 2 2

1ω
ω ω

=
+ +

�

n

P
X s

m s s
 

 
The above equation can be written in partial fraction as: 

 

( ) 1 1 2 2

2 2 2 2 2 2 2 2

1ω
ω ω ω ω

+ +
= = +

+ + + +
�

n n

P A s B A s B
X s

m s s s s
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where 
1A , 

2A , 
1B  and 

2B  are left as an exercise for the student. 

The expression for ( )X s  is therefore 

 

( ) 2 2 2 2 2 2

1ω ω ω
ω ω ω ω ω

 
= − + − + − + 

� �n

n n

P P
X s

k m s k m s
 

 
The inverse Laplace Transform of the above equation is given by 

 

 

[ ] ( ) ( )
2 2

Particular SolutionComplementary Solution

sin

( ) sin

i

sin

s n

n

n

n

P P
x t X s t

A

t
k m k m

A B

t B tω

ω ω
ω ω

ω ω

ω

= = − +   − −

= +

� �

����� ����

���������

�

�

-1
L

 (9-2) 

where  

( ) ( )
2

n nP P
A

k m Den

ω ω ω ω
ω

= − =
−
� �

  and  
2

P P
B

k m Denω
= =

−
� �  

 

where 
2

Den k mω= − . 
 

• As 0ω → ,  lim 0
0

A
ω

=
→

 and lim
0

static deflection
P

B
kω

 = ≡ 
 →
�  

• As ω  increases from zero the denominator 
2

Den k mω= −  becomes small and the 

amplitude increases, therefore, both A and B increase. 

• The expression of the denominator Den  can be written as 
2

2 2 2 2 2

2
1

n n

n

k
Den k m m m m

m

ω
ω ω ω ω ω

ω

    = − = − = − = −      
 

• It is clear that when nω ω=  the denominator becomes zero and the amplitude of 

vibrations increases without bound, therefore resonance occurs. 
 
 

Sinusoidal Transfer Function (STF) The sinusoidal Transfer Function 
(STF) is defined as the transfer function ( )G s  in which the variable ( )s  is replaced by 

( )jω . 

 

                          

TF
�������

( )G s s jω= ( )G j ω

                          

STF
�������

 
 

Figure 9-3 Sinusoidal Transfer Function STF 
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When only the steady-state solution (the particular solution) is wanted, the STF 

( )G jω  can simplify the solution. In our discussion, we are concerned with the behavior of 

stable, LTI system under steady state conditions, i.e., that is after the initial transients died 
out. We shall see that sinusoidal inputs produce sinusoidal outputs  in the steady state with 
the amplitude and phase angle at  each frequency ω  determined by the magnitude and the 

angle of ( )G jω , respectively. 

 

Deriving Steady State Output caused by Sinusoidal Input 
 Figure 9-4 shows an LTI system for which the input ( )P s  and the output is ( )X s . 

                          

TF
�������

( )G s

( )X s( )P s

( ) sin
o

p t P tω=

 
 

Figure 9-4  Linear Time Invariant (LTI) System 

 
 

The input ( )p t  is sinusoidal  and is given by 

 

( ) sin
o

p t P tω=  

 

We shall show that the output ( )x t  at steady state is given by 

 

( ) ( )( ) sin
o

x t G j P tω ω φ= +  

 

where ( )G jω  and φ  are the magnitude and phase angle of ( )G jω , respectively. 

 

Suppose that the transfer function ( )G s  can be written as a ratio of two polynomials 

in s ; that is 
 

( ) ( )( ) ( )
( )( ) ( )

1 2

1 2

n

n

K s z s z s z
G s

s s s s s s

+ + +
=

+ + +

�

�
 

 

The Laplace transform ( )X s  is  

 

 ( ) ( ) ( )X s G s P s=  (9-3) 

where ( ) [ ]( )P s p t= L . 

 
Let us limit our discussion to stable systems. For such systems, the real parts of the 

is−  are negative. The steady state response of a stable linear system to a sinusoidal input 

does not depend on I. C’s, so they can be ignored.  
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• If ( )G s  has only distinct poles, then the partial fraction of Equation (9-3) yields 

 

( ) ( ) 2 2

1 2

1 2

n

n

P
X s G s

s

a a b b b

s j s j s s s s s s

ω
ω

ω ω

=
+

= + + + + +
+ − + + +

�

 (9-4) 

 

where a  and ( )1,2, ,
i

b i n= �  are constants and a  is the complex conjugate of a . The 

response ( )x t  can be obtained by taking the inverse Laplace transform of Equation (9-4) 

 

[ ] ( ) 21

1 2

For a stable system these terms 0 as t
since they  have negative real part

( ) ns t s ts tj t j t

nx t X s ae a e b e b e b e
ω ω − −−−

→ →∞

= = + + + + +   �
�������������

-1
L  

 

• If ( )G s  involves k multiple poles 
j

s , then ( )x t  will involve such terms as 

js th
t e

−
(where 0,1,2, , 1h k= −� ). Since the real part of the 

j
s− is negative for a 

stable system, the terms 0js th
t e

− →  when t → ∞ . 
 

Regardless of whether the system involves multiple poles, the steady state response becomes 
 

 ( ) j t j t
x t ae a e

ω ω−= +  (9-5) 

 

where the constants a  and a  can be evaluated from Equation (9-4): 
 

( ) ( ) ( )

( ) ( ) ( )

2 2

2 2

2

2

s j

s j

P P
a G s s j G j

s j

P P
a G s s j G j

s j

ω

ω

ω
ω ω

ω

ω
ω ω

ω

=−

=

= + = − −
+

= − =
+

 

 

Notice that a  is the complex conjugate of a . Referring to Figure 9-5, we can write 
 

( )G jω

x
G

y
G

φ

( )G jω−

φ−
σ

( )jω

 
 

Figure 9-5  Complex function and its complex conjugate. 



ME 413 Systems Dynamics & Control  Chapter 9: Frequency Domain Analyis of Dynamic Systems Systems  

 

6/26 
 

( )
( ) ( )
( ) ( )
( )

cos sin

cos sin

x y

j

G j G G

G j j G j

G j j

G j e
φ

ω

ω φ ω φ

ω φ φ

ω

= +

= +

= +

=

 

 

Notice that ( ) j
G j e

φω φ∠ = ∠ = . Similarly, 

 

( ) ( ) ( )j j
G j G j e G j e

φ φω ω ω− = − =  

 

Substitute the expressions of ( )G jω  and ( )G jω−  into the expressions of a  and a , one 

can get 

( )

( )

2

2

j

j

P
a G j e

j

P
a G j e

j

φ

φ

ω

ω

−= −

= −
 

Then Equation (9-5) can be written as 
 

 

( )
( ) ( )

( )

( ) ( )
( )

sin

( )
2

sin

sin

j t j t

o

t

o

e e
x t G j P

j

G j P t

X t

ω φ ω φ

ω φ

ω

ω ω φ

ω φ

+ − +

+

−
=

= +

= +

�������

 (9-6) 

 

where ( ) o
X G j Pω=  and ( )G jφ ω= ∠  

 

( ) sinω= otp P t

( )
( )

ω

ωφ ∠

=

=
o G j

G j

X P

Same frequency

( )G jωInput Output

( )( ) sin ω φ+= tx t X

Output amplitude

Phase of the output 
 

 
Figure 9-6  Input output relationships for sinusoidal inputs. 
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Therefore for sinusoidal inputs,  
 

 ( ) ( )
( )

amplitude ratio of the output

sinusoid to the input sinusoid

X j
G j

P j

ω
ω

ω
= =  (9-7) 

 

 ( ) ( )
( )

( )
( )

1tan
imaginary part of  

real part of 

phase shift of the output sinusoid

 with respect to the input sinusoid

X j G j
G j

P j G j

ω ω
ω

ω ω
−
 

∠ = ∠ =  
 

=

 (9-8) 

 
 

█ Example 9-1 (Textbook Page 437) 
 

Consider the TF 

( )
( )

( ) 1

1

X s
G s

P s Ts
= =

+
 

 

For the sinusoidal input ( ) sinop t P tω= , what is the steady-state output ( )x t . 

 
█ Solution 

 

 Substituting jω  for s  in ( )G s  yields  

 

( ) 1

1
G j

Tj
ω

ω
=

+
 

 
The output-input amplitude ratio is 

 

( )
2 2

1

1
G j

T
ω

ω
=

+
 

 

 and the phase angle φ  is  

 

( ) 1tanG j Tφ ω ω−= ∠ = −  

 

So, for the input ( ) sinop t P tω= , the steady-state output ( )x t  can be found as 

 

 ( )1

2 2
( ) sin tan

1

oP
x t t T

T
ω ω

ω
−= −

+
 (9-9) 

 

 

█ Example 9-2  
 

Find the steady state response of the following system: 
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5 4 12y y p p+ = +��  

 

if the input is ( ) 20sin 4p t t=   

 

█ Solution  
 

First obtain the TF 
 

( ) ( )
( )

4 12 3
4

5 5

Y s s s
G s

P s s s

+ +
= = =

+ +
 

 

From the input ( ) 20sin 4p t t= , it is clear that 4ω =  rad/s. Therefore, the sinusoidal 

Transfer function is 
 

( ) ( )
( )

3 4 3 3 4
4 4 4

5 4 5 5 4

Y j j j j
G j

G j j j j

ω ω
ω

ω ω
+ + +

= = = =
+ + +

 

Then 

( )
( )

( )

22

22

3 43 4 25
4 4 4 3.123

5 4 415 4

j
G j

j
ω

++
= = = =

+ +
 

and 

( ) ( ) ( )

1 1 1 1

3
4 4 3 5

5

4 4
0 tan tan 0 tan tan 0.253

3 5 3 5
 rad

j
G j j j

j

ω
φ ω ω ω

ω

ω ω− − − −

 +
= ∠ = ∠ = ∠ + ∠ + − ∠ + + 

= + − = + − =� �

 

 
The steady state response is  

 

( ) ( )
( ) ( )

( ) sin

3.123 20sin 4 0.253 62.46sin 4 0.253

oy t G j P t

t t

ω ω φ= +

= × + = +
 

 

█ Example 9-3 (Example 9-2 in the Textbook Page 437-438) 
 

Suppose that a sinusoidal force ( ) sin
o

p t P tω=  is applied to the mechanical system shown 

in Figure 9-7. Assuming that the displacement x  is measured from the equilibrium position, 

find the steady-state output. 

m

x

kb
( ) sin

o
p t P tω=

 
Figure 9-7  Mechanical system 
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█ Solution  
 

The equation of motion for the system is  
 

( )m x bx k x p t+ + =�� �  

 
The Laplace Transform of this equation, assuming zero I.C’s, is 

 

( ) ( )2 ( )m s bs k X s P s+ + =  

 

where ( ) [ ]( )X s x t= L  and ( ) [ ]( )P s p t= L . (Notice that the I.C’s do not affect the 

steady state output and so can be taken to be zero). The TF is  
 

( ) ( ) ( )2

1

( )

X s
G s

P s m s bs k
= =

+ +
 

 

Since the input is a sinusoidal function ( ) sinop t P tω= , we can use the STF to obtain the 

steady-state solution. The STF is  
 

( ) ( ) ( )2 2

1 1

( )

X j
G j

P j m bj k k m jb

ω
ω

ω ω ω ω ω
= = =

− + + − +
 

 

From Equation (9-6), the steady-state output ( )x t  can be written as 

 

( ) ( )( ) sin
o

x t G j P tω ω φ= +  

where  

( )
( )2

2 2 2

1
G j

k m b

ω
ω ω

=
− +

 

and 

( ) ( )
1

22

1
tan

b
G j

k mk m jb

ω
φ ω

ωω ω
−= ∠ = ∠ = −

−− +
 

 
therefore  

 

( )
1

22
2 2 2

( ) sin tano
P b

x t t
k m

k m b

ω
ω

ωω ω

−= −
−− +

 
 
 

 

 

Since 
2

n
k mω =  and 2

n
b k ζ ω=/ / , the equation for ( )x t  can be written as 
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1

2 2 2
2 2

2

/
( ) sin tano

b

P k kx t t
k m

k m b
k k

k k k

ω
ω

ωω ω

−= −

−− +

 
 
 

   
   
 

 

or 

( ) ( )( )

( )
( )

1

2
2

22

/ 2
( ) sin tan

1
1 2

o n

n
n n

P k
x t t

ζ ω ω
ω

ω ωω ω ζ ω ω

−= −
−− +

 
 
   

 

 

Let frequency ratio
n

β ω ω= ≡ , the above equation can be written as 

 

 

( )

1

22 22

2
( ) sin tan

1
1 2

st
x

x t t
ζβ

ω
ββ ζβ

−= −
−− +

 
 
   

 (9-10) 

 

where 
st o

x P k=  is the static deflection. Writing the amplitude of ( )x t  as X , we find that 

the amplitude ratio /
st

X x  and the phase shift φ  are 

 

( )
2 22

1

1 2st

X

x β ζβ
=

− +  

  and  
1

2

2
tan

1

ζβ
φ

β
−= −

−
 

 

The variations of the amplitude ratio / stX x  and the phase shift φ  are shown in figures 9-8 

and 9-9 as a function of β  for different values of ζ . 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-5

0

5

10

15
Frequency Response Magnitude Ratio

β  = ω /ω
n

X
/x

s
t

ζ = 0.0

0.05

0.1

0.25

0.50

1.005.0 2.0

 
Figure 9-8 Variation of the amplitude ratio / stX x  with the frequency ratio β . 
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0 0.5 1 1.5 2 2.5 3
0

π/2

π
Frequency Response Phase Angle

β= ω / ω
n

φ(
ω

)

ζ = 0.0
0.

05

0.1

0.25

0.50 1.00

2.0

5.0

ζ = 0.0

 
Figure 9-9 Variation of the phase  φ  with the frequency ratio β . 

 
 

 

9.3 VIBRATIONS IN ROTATING MECHANICAL SYSTEMS 
 

Vibration due to Rotating Unbalance 
 

Force inputs that excite vibratory motion 
often arise from rotating unbalance, a 
condition that arises when the mass center of 
a rotating rigid body and the center of 
rotation do not coincide.  
 
Figure 9-10 shows an unbalanced machine 
resting on shock mounts.  
 
Assume that the rotor is rotating at a constant 
speed ω  rad/s and that the unbalanced mass 
m  is located at a distance r  from the center 
of rotation. Then the unbalanced mass will 

produce a centrifugal force 
2

m rω . 

The equation of motion for the system is  
 

( )M x bx k x p t+ + =�� �   (9-11) 

 
where 

m

x

k b

r

ωTotal  Mass  M
















 
 

Figure 9-10  Unbalance machine resting on 
shock mounts 

2( ) sinp t m r tω ω=  
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Is the force applied to the system. Take LT of both sides of Equation. (9-11), assuming zero 
I.C’s, we have 

( ) ( )2 ( )M s bs k X s P s+ + =  

or 

( ) ( ) ( )2

1

( )

X s
G s

P s M s bs k
= =

+ +
 

The STF is  

( ) ( ) ( )2

1

( )

X j
G j

P j k M jb

ω
ω

ω ω ω
= =

− +
 

 

For the sinusoidal forcing function ( )p t , the steady-state output is obtained from Equation. 

(9-6) as  
 

( )

( )

2 1

2

2
1

22
2 2 2

( ) sin

( ) sin tan

sin tan

x t X t

b
G j m r t

k M

m r b
t

k M
k M b

ω φ

ω
ω ω ω

ω

ω ω
ω

ωω ω

−

−

= +

 
= − − 

 
= − − − +

 

Divide the numerator and denominator of the amplitude and those of the phase angle by k  

and substitute
2

n
k Mω = /  and 2

n
b M ζω=/  into the result, the steady-state output 

becomes  
 

( ) ( )( )

( )
( )

2
1

22 22

2/
( ) sin tan

1
1 2

n

n
n n

m r k
x t t

ζ ω ωω
ω

ω ωω ω ζ ω ω

−
 

= − 
 −   − +

 

 

or 

( )

2
1

22 22

/ 2
( ) sin tan

1
1 2

m r k
x t t

ω ζβ
ω

ββ ζβ

− 
= − −  − + 

 

 

where 
nβ ω ω= . 

 

9.4 VIBRATION ISOLATION 
 

Vibration isolation is a process by which vibratory effects are minimized or eliminated. The 
function of a vibration isolator is: 

 

• to reduce the magnitude of force transmitted from a machine to its foundation.  

• or to reduce the magnitude of motion transmitted from a vibratory foundation to a 
machine. 
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Figure 9-11(a) illustrates the case in which the source of vibration is a vibrating force 
originating within the machine (force excitation). The isolator reduces the force transmitted to 
the foundation. In Figure 9-11(b) the source of vibration is a vibrating motion of the 
foundation (motion excitation). The isolator reduces the vibration amplitude of the machine. 

 

 
 

Figure 9-11  Vibration isolation. (a) Force excitation; (b) Motion excitation. 

 
 
 

Isolation Systems 
 

■ Passive: It consists of a resilient member (stiffness) and energy dissipater (damping) 
that have constant properties. Examples are metal springs, cork, felt, pneumatic 
springs, elastomer (rubber) springs. 

 
■ Active: External power is required for the isolator to perform its function. An active 

isolator is comprised of a servomechanism with a sensor, signal processor and an 
actuator. 

 
A typical vibration isolator is shown in Figure 9-12. (In a simple vibration isolator, a 

single element like synthetic rubber can perform the functions of both the load-supporting 
means and the energy-dissipating means). 

 

k b








 
 

 
Figure 9-12 Vibration isolator. 
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Practical Examples. 
 

 
 

Figure 9-13  (a)- Undamped spring mount;(b)- Damped spring mount;(c)- Pneumatic rubber Mount.  

 
 

Transmissibility. Transmissibilty is a measure of the reduction of a 

transmitted force or motion afforded by an isolator 
 

Transmissibility for Force excitation.  For the system shown in 

Figure 9-8, the source of vibration is a vibrating force resulting from the unbalance of the 
machine. The transmissibility in this case is the force amplitude ratio and is given by 

 

0

Amplitude of the transmitted force
Transmissibility=TR

Amplitude of the excitatory force
tF

F
= =  

 

Let us find the transmissibility of this system in terms of the damping ratio ζ  and the 

frequency ratio  nβ ω ω= . 

 The excitation force (in the vertical direction) is caused by the unbalanced mass of the 
machine and is 

2

0( ) sin sinp t m r t F tω ω ω= =  

 
The equation of motion for the system is equation (9-11), rewritten here for convenience: 

 

 ( )M x bx k x p t+ + =�� �  (9-12) 

 

where M  is the total mass of the machine including the unbalance mass m . The force ( )f t  

transmitted to the foundation is the sum of the damper and spring forces, or 
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 ( )( ) sin
t

f t bx k x F tω φ= + = +�  (9-13) 

 
 Taking the LT of Equations. (9-12) and (9-13), assuming zero I. C’s, gives 
 

( ) ( )
( ) ( )

2 ( )

( )

M s bs k X s P s

bs k X s F s

+ + =

+ =
 

 

where ( ) [ ]( )X s x t= L , ( ) [ ]( )P s p t= L  and ( ) [ ]( )F s f t= L . Hence, 

 

( )

( )

2

1

( )

( ) 1

X s

P s M s bs k

F s

X s bs k

=
+ +

=
+

 

 

Eliminating ( )X s  from the above two equations yields 

 

( )
( )

( )
( ) 2

( )

( )

F s X sF s bs k

P s X s P s M s bs k

+
= =

+ +
 

 The STF is thus 
 

( ) ( ) ( )
( ) ( )2 2( )

F j b M j k Mbj k

P j M bj k b M j k M

ω ωω
ω ω ω ω ω

++
= =

− + + − + +
 

 

Substituting 
2

n
k M ω=  and 2

n
b M ζω=  into the last equation, and simplifying, we 

obtain 

( ) ( )
( ) ( )2

1 2

( ) 1 2

n

n n

jF j

P j j

ζω ωω
ω ω ω ζω ω

+
=

− +
 

 
From which it follows that 

 

( ) ( )

( ) ( )

( )

( ) ( )

2 2

2 2 222 2

1 2 1 2

( )
1 21 2

n

n n

F j

P j

ζω ω ζβω

ω β ζβω ω ζω ω

+ +
= =

− +− +  

 

 

where nβ ω ω= . Noting that the amplitude of the excitatory force is ( )0
F P jω=  and 

that the amplitude of the transmitted force is ( )t
F F jω= , we obtain the transmissibility: 

 

 
( ) ( )

( ) ( )

2

2 22
0

1 2

( )
1 2

TR t
F F j

F P j

ζβω

ω β ζβ

+
= = =

− +
 (9-14) 
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which depends on β  and ζ  only. Figure 9-14 shows plots of TR  for different values of ζ  

as a function of β . It immediately follows from Figure 9-14 that the condition 2β >  must 

be met in order that TR 1< , which means the transmitted force amplitude is less than the 
excitation force amplitude.  

0  0.2 0.4 0.6 0.8 1  1.2 1.6 1.8 2  
-1

0

1

2

3

4

5

6
Curves of Transmissibility T

β = ω / ω
n

T
R

ζ = 0.0

0.25

0.50

1.0

2.0

 0.1

√2

Amplification Region
TR > 1

Isolation  Region
TR < 1

 
Figure 9-14 Curves of transmissibility TR versus 

n
β ω ω=  

 
 

Therefore, in order to achieve transmitted force reduction, often called suppression, it is 

important to design the spring constant k  such that 
n

ω  satisfies the condition that 

2nβ ω ω= >  or 
2

n

k

m

ω
ω = <  for a given mass M  and a specified forcing 

frequency ω . When 2β = , however the Transmissibility is equal to unity regardless of 

the value of ζ . 
 

Figure 9-14 shows some curves of the transmissibility versus 
n

β ω ω= . It is clear that: 

• all the curves pass through a critical point where 1TR =  and  2β = . 

• For 2β < , as the damping ratio ζ  increases, the transmissibility at resonance 

decreases.  

• For 2β > , as ζ  increases, the transmissibility increases.  

• For 2β < , or 2 nω ω< , increasing damping improves the vibration isolation. 

• For 2β > , or 2 nω ω> , increasing damping adversely affects the vibration 

isolation 
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Notice that since 
2

0
( )P j F m rω ω= = , the amplitude of the force transmitted to the 

foundation is  
 

 ( )
( )

( ) ( )

22

2 22

1 2

1 2
t

m r
F F j

ω ζβ
ω

β ζβ

+
= =

− +
 (9-15) 

 

█ Example 9-4  
 

Suppose a machine is mounted on an elastic bearing, which in turns sits on a rigid foundation. 
The bearing damping is negligible. In operation the machine generates a harmonic force 
having a frequency of 1000 rpm. If the mass of the machine is 50 kg, find the condition on the 

equivalent spring constant k  of the elastic bearing for suppression of the transmitted force. 
Also find the percentage of the dynamic force, generated by the machine, that is transmitted 

into the foundation if the stiffness of the bearing is 200 kN/mk = . 

 

█ Solution  
 

The condition for suppression of the transmitted force is given by 2nβ ω ω= >  or  

2
n

k

m

ω
ω = <  

 

The forcing frequency is 1000 (1000)(2 ) 60 104.7rpm rad sω π= = = . Substituting the 

values of ω  and m  into the above equation gives 
 

104.7
74.05

2
rad sn

k

m
ω = < =  

or 

( ) ( )( )2 2

74.05 50 74.05 274 kN/mk m< = =  

 
which is the desired condition on the stiffness of the bearing. 

When the stiffness of the foundation is 200 kN/mk = , the natural frequency of the 

machine-bearing system is given by 
 

200000
63.2

50
rad sn

k

m
ω = = =  

 

Therefore, the frequency ratio is 104.7 63.2 1.657nβ ω ω= = = . Substitute this value 

of β  and 0ζ =  into Equation (9-14) yields 

 

( )

( ) ( ) ( )

2

2 222 2

1 2 1
0.573

1 2 1 1.657

TR
ζβ

β ζβ

+
= = =

− + −
 

Therefore 57.3%  of the machine-generated dynamic force is transmitted into the foundation. 
An assessment of whether this is an adequate reduction must be based upon the information 
not provided in the problem statement. 
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█ Example 9-5 (Textbook Page 445)  
 

In the system shown in Figure 9-8 and shown below for convenience, the mass. 

15 6000 0.2kg, 450 N-s/m,  N/m, 0.005 kg,  mM b k m r= = = = = and 16 rad/s,ω = what is 

the force transmitted to the foundation? 
 

█ Solution  
 

The equation of motion for the system is 
215 450 6000 (0.005)(16) (0.2)sin16x x x t+ + =�� �  

Consequently, 

6000
20

15

450 450
2 0.75

15 15 2 20

rad s
n

n

ω

ζω ζ

= =

= ⇒ = =
× ×

 

We can find that 16 20 0.8
n

β ω ω= = = . From Equation. (9-15), we have 

( )

( ) ( )

( )( ) ( ) ( )

( ) ( )

2 2 22

2 22 22 2

1 2 0.05 16 0.2 1 2 0.75 0.8
0.319

1 2 1 0.8 2 0.75 0.8

N
t

m r
F

ω ζβ

β ζβ

+ + × ×
= = =

− + − + × ×
 

 

Automobile Suspension System. Figure 9-15(a) shows an 

automobile system. Figure 9-15(b) is a schematic diagram of an automobile suspension 
system. As the car moves along the road, the vertical displacements at the tire act as motion 
excitation to the automobile suspension system. The motion of this system consists of a 
translational motion of the center of mass and a rotational motion about the center of mass. A 
complete analysis of the suspension system would be very involved.  

 

k bk b

 
Figure 9-15 (a) Automobile system; (b) Schematic diagram of an automobile suspension system. 
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A highly simplified version appears in Figure 9-16. Let us analyze this simple model 
when the motion input is sinusoidal. We shall derive the transmissibility motion excitation 
system. 

k
b

m

 
 

Figure 9-16 Simplified version of the automobile suspension system of Figure 9-13. 
 
 

Transmissibility for Motion Excitation. In the mechanical system  

shown in Figure 9-17, the motion of the body is in the vertical direction only. The motion 

( )p t of point A  is the input to the system; the vertical motion ( )x t  of the body is the 

output. The displacement ( )x t  is measured from the equilibrium position in the absence of 

the input ( )p t . We assume that ( )p t  is sinusoidal, or  

( ) sinop t P tω=  

 
The equation of motion for the system is 

( ) ( ) 0mx b x p k x p+ − + − =��� �  

or 

mx bx kx bp kp+ + = +��� �  

 
Take LT of both sides of the above equation, assuming 
zero I.C’s  

( ) ( ) ( ) ( )2
ms bs k X s bs k P s+ + = +  

Hence, 

( )
( )

( )
( )2

X s bs k

P s ms bs k

+
=

+ +
 

k b

m

( ) sinω= op t P t
 

Figure 9-17 Mechanical system 

The STF is then 

( )
( )

( )
( )2

X j bj k

P j k m jb

ω ω
ω ω ω

+
=

− +
 

 

The steady-state output ( )x t  has the amplitude ( )X jω . The input amplitude is 

( )P jω . The transmissibility TR  in this case is the displacement amplitude ratio and is 

given by 

Amplitude of the output displacement
TR

Amplitude of the input displacement
=  
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Thus  

( )

( )

2 2 2

2
2 2 2( )

X j b k

P j
k m b

ω ω
ω ω ω

+
=

− +
 

 

Substituting 
2

n
k m ω=  and 2

n
b m ζω=  into the last equation, and simplifying, we 

obtain 

 
( )

( ) ( )

2

2 22

1 2
TR

1 2

ζβ

β ζβ

+
=

− +
 (9-16) 

 

where 
nβ ω ω= . This equation is identical to Equation 9-14. 

 
 

█ Example 9-6 (Example 9-4 in the Textbook Page 447)  
 

A rigid body is mounted on an isolator to reduce vibratory effects. Assume that the mass of the 

rigid body is 500 kg, the damping coefficient of the isolator is very small ( )0.01ζ = , and the 

spring constant of the isolator is 12,500 N/m.  Find the percentage of motion transmitted to the 
body if the frequency of the motion excitation of the base of the isolator is 20 rad/s. 

 

█ Solution  
 

The undamped natural frequency 
n

ω of the system is . 

12,500
5

500
rad s

n

k

m
ω = = =  

so  

20 5 4
n

β ω ω= = =  

Substituting 0.01ζ =  and 4β =  into Equation 9-16, we get 

( )

( ) ( )

( )

( ) ( )

2 2

2 22 22 2

1 2 1 2 0.01 4
TR 0.0669

1 2 1 4 2 0.01 4

ζβ

β ζβ

+ + × ×
= = =

− + − + × ×

 

The isolator thus reduces the vibratory motion of the rigid body to 6.69% of the vibratory 
motion of the base of the isolator. 

 

9.5 DYNAMIC VIBRATION ABSORBERS 
 

If a mechanical system operates near a critical frequency, the amplitude of vibration increases 
to a degree that cannot be tolerated, because the machine might break down or might 
transmit too much vibration to the surrounding machines. This section discusses a way to 
reduce vibrations near a specified operating frequency that is close to the natural frequency 
(i.e., the critical frequency) of the system by the use of a dynamic vibration absorber.  

 
This section is covered with more details in the Lab. Refer to Laboratory notes. 

 
http://www.wcsscience.com/tacoma/bridge.html  
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9.6 FREE VIBRATION IN MULTI-DEGREES-OF-FREEDOM 
SYSTEMS 

 

Two-degrees-of-freedom system. A two-degrees-of-freedom system 

requires two independent coordinates to specify the system’s configuration. Consider the 
mechanical system shown in Figure 9-18, which illustrates the two-degrees-of-freedom-case. 

 

1m
2m

1k 2k
3k

 
 

Figure 9-18 Mechanical system with two-degrees-of-freedom. 
 
 

Let us derive the mathematical model of this system. Apply Newton’s second law to mass 

1m  and mass  
2m , we have 

 

( )
( )

1 1 1 1 1 2 1 2 1 1

2 2 2 3 2 2 2 1 2 2

Mass 

Mass 

m F m x k x k x x m x

m F m x k x k x x m x

⇒ = ⇒ − − − =

⇒ = ⇒ − − − =

∑
∑

�� ��

�� ��
 

 
Rearranging terms yields 

 

 ( )1 1 1 2 1 2 2
0m x k k x k x+ + − =��  (9-19) 

 ( )2 2 2 3 2 2 1
0m x k k x k x+ + − =��  (9-20) 

 
The above equations represent a mathematical model of the system. 

 
 

Free Vibrations in two-degrees-of-freedom system. Consider 

the mechanical system shown in Figure 9-19, which is a special case of the system shown in 
Figure 9-18.  

 

m m

k k k

 
 

Figure 9-19 Mechanical system with two-degrees-of-freedom. 

 
The equations of motion for the system of Figure 9-17 can be obtained by substituting 

1 2
m m m= =  and 

1 2 3
k k k k= = = into Equations (9-19) and (9-20), yielding 

 

 1 1 22 0mx kx kx+ − =��  (9-21) 

 
2 2 1

2 0mx kx kx+ − =��  (9-22) 



ME 413 Systems Dynamics & Control  Chapter 9: Frequency Domain Analyis of Dynamic Systems Systems  

 

22/26 
 

To find the natural frequencies of the vibration, we assume that the motion is 
harmonic. That is, we assume that 

 

1 2sin , sinx A t x B tω ω= =  

Then 
2 2

1 2sin , sinx A t x B tω ω ω ω= − = −�� ��  

 
If the preceding expressions are substituted into Equations (9-21) and (9-22), the resulting 
equations are 

( )
( )

2

2

2 sin 0

2 sin 0

mA kA kB t

mB kB kA t

ω ω

ω ω

− + − =

− + − =
 

 

Sine these equations must be satisfied at all times and since sin tω  cannot be zero at all 
times, the quantities in parentheses must be equal to zero. Thus, 

 
2

2

2 0

2 0

mA kA kB

mB kB kA

ω

ω

− + − =

− + − =
 

 
Rearranging terms we have 

 

 ( )22 0k m A kBω− − =  (9-23) 

 ( )22 0kA k m Bω− + − =  (9-24) 

 

For constants A and B  to be nonzero, the determinant of the coefficients of Equations (9-23) 
and (9-24) must vanish, or 

 

( )
( )

2

2

2
0

2

k m k

k k m

ω

ω

− −
=

− −
 

 
or 

( )2
2 22 0k m kω− − =  

 
or 

 

 

2
4 2

2
4 3 0ω ω− + =
k k

m m
 (9-25) 

 
Equation (9-25) can be factored as 

 

2 2 3 0ω ω  − − =  
  

k k

m m
 

from which 
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2 2, 3ω ω= =
k k

m m
 

Consequently, 
2ω  has two values, the first representing the first natural frequency 1ω  (first 

mode) and the second representing the second natural frequency 2ω  (second mode): 

 

1

3
,ω ω= =

k k

m m
 

 
Notice that in the one-degree-of-freedom system only one natural frequency exists, whereas 
the two degrees-of-freedom system has two natural frequencies. 

Notice that, from Equation (9-23), we have 
 

 
2

2

B k

A k mω
=

−
 (9-26) 

 
also, from Equation (9-24), we obtain 

 

 
( )22k mA

B k

ω−
=  (9-27) 

 

If we substitute 
2ω = k m  (first mode) into either Equation (9-26) or (9-27), we obtain, in 

both cases, 

1
A

B
=  

m m

k k k

 
 

Figure 9-20  Mode shape corresponding the first mode 

 
 

If we substitute 
2 3ω = k m  (second mode) into either Equation (9-26) or (9-27), we have 

1
A

B
= −  

m m

k k k

 
 

Figure 9-21  Mode shape corresponding the second mode. 
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If the system vibrates at either of its two natural frequencies, the two masses must vibrate at 
the same frequency. 

 
█ Example 9-7  

 

In the system shown in Figure 22, the displacements 1 2,x x  and 3x  are measured from the static-

equilibrium position of the system. 
 

1x 2x 3x

1m 2m 3m

1k 2k

 
 

Figure 9-22 System with three degrees of freedom. 

 

█ Solution  
 

The Free Body Diagram (FBD) of the above system is shown in Figure 2.  

1x

1m

3x

3m

2x

2m
( )1 1 2k x x− ( )2 2 3k x x−

( )1 2 1k x x− ( )2 3 2k x x−

 

Figure 9-23 FBD of the system above. 

 

Neglect the gravitational force on the three masses and apply Newton’s second law of motion for a 
system in translation, one can get 

F mx=∑ ��       (1) 

Mass 1m ,    ( )1 1 1 1 2 0m x k x x+ − =��      (2) 

Mass 2m ,    ( ) ( )2 2 1 2 1 2 2 3 0m x k x x k x x+ − + − =��    (3) 

Mass 3m ,    ( )3 3 2 3 2 0m x k x x+ − =��      (4) 

In matrix form, the previous system can be written as 

( )
1 1 1 1 1

2 2 1 1 2 2 2

3 3 2 2 3

0 0 0 0

0 0 0

0 0 0 0

m x k k x

m x k k k k x

m x k k x

−       
        + − + − =        
        −       

��

��

��

    (5) 

or in more compact form 
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[ ]{ } [ ]{ } { }0M x K x+ =��       (6) 

where  

[ ]

[ ] ( )

{ }

1

2

3

1 1

1 1 2 2

2 2

1

2

3

0 0

0 0  mass matrix of the system

0 0

0

stiffness matrix of the system

0

vector of displacement coordinates

m

M m

m

k k

K k k k k

k k

x

x x

x

 
 = ≡ 
 
 

− 
 = − + − ≡ 
 − 

 
 

= ≡ 
 
 

    (7) 

Assume a solution of the form 

{ } { } i t
x v e

ω=       (8) 

Substitution of eq. (8) into (6) yields the following associated eigenvalue problem 

( )
1 1 1 1 1

1 1 2 2 2 2 2

2 2 3 3 3

0 0 0

0 0

0 0 0

k k v m v

k k k k v m v

k k v m v

−       
      − + − = λ      
      −       

      (9) 

where 
2λ = ω . Assume that 1 2 1 2 31 N/m, and 1 kg.k k k m m m m= = = = = = =  The script that 

determines the eigenvalues and associated eigenvectors is 

MATLAB PROGRAM: 
 

>> k=1; k1=k;k2=k; 

>> m=1; m1=m;m2=m; 

>> K=[k   -k   0;-k   2*k   -k;0   -k   k]; 
>> M=[m   0   0;0   m   0;0   0   m]; 

>>[Modes, Eigenvalues]=eig(K,M) 

 
Execution of the script gives 

 
Modes = 

 

   -0.5774   -0.7071    0.4082 

   -0.5774    0.0000   -0.8165 

   -0.5774    0.7071    0.4082 

 
Eigenvalues = 

 



ME 413 Systems Dynamics & Control  Chapter 9: Frequency Domain Analyis of Dynamic Systems Systems  

 

26/26 
 

    0.0000    1.0000    0.0000 

    0.0000    1.0000    0.0000 

    0.0000    0.0000    3.0000 

since 
2λ = ω , then the frequencies are 1 3 1.732 rad/s= =ω , 2 1 1 rad/s= =ω  and 

3 0 0 rad/s= =ω . 

When the system above is examined, it is found that, since the masses at each end are not restrained, a 
rigid-body mode in which all masses move in the same direction by the same amount is possible. This 
is reflected in the corresponding vibration mode, which is depicted in the third column of the matrix of 
vibration modes. The springs are neither stretched nor compressed in this case.  

0.4082 0.4082-0.8165

 

0.57740.5774

 

0.57740.57740.5774

 


