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8.1 INTRODUCTION 
 

Poles and Zeros of a Transfer Function 
 

Poles: The poles of a transfer function are those values of s for which the function is undefined 
(becomes infinite). 

 
Zeros: The zeros of a transfer function are those values of s for which the function is zero.  

 

Example of the Effect of Pole/Zero Locations 

 
Figure 8-1. 

From the development summarized above, the following conclusions can be drawn: 
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A pole of the input function generates the form of the forced response. (i.e., the pole at 

the origin generates a step function at the output) 
 
► A pole of the transfer function generates the form of the natural response (i.e., the pole at σ−  

generates 
t

e
σ−

) 

► A pole on the real axis generates an exponential response of the form 
t

e
σ−

, where σ−  is the 
pole location on the real axis. Thus, the pole farther the left a pole is on the negative  
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Standard Form of the First Order System Equation 
 

1
( )

B
y y u t

τ τ

 
+ = 
 

�       (1) 

 
The transfer function of the previous system is defined by 
 

( )
( )
( ) ( )

/

1/

Y s B
G s

U s s

τ

τ
= =

+
 

where τ  is known as the time constant. It has dimensions of time for all physical systems described 
by the first order differential equation above. The above equation can be respresented as 
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( )G s ( )Y s( )U s

Transfer Function

�������
 

 
 
Examples 

i) Spring-Damper System 
 
Equation of motion 

by ky k x+ =�  

or 

1 k
y y x

b b

k

 
+ =  
   
 
 

�  

Comparing the above equation with the standard one, so that 

time cons ant/ tb kτ = =  
with the units of  

[ ] [ ]
[ ]
[ ]

[ ]
N.s/m

s
N/m

/b kτ = ==  

 
ii) RC-Circuit 

 
Equation of motion 

o o iRCe e e+ =�  

time constantRCτ = =  
with the units of  

[ ] [ ]
[ ]
[ ]

[ ]
[ ]

[ ]
V.s q

s
q V

RCτ = × ==  

 
iii) Liquid Level System 

 
Equation of motion 

1 1dh
h q

dt RC C
+ =  

time constantRCτ = =  
with the units of  

[ ] [ ]
[ ]

[ ]2

3

m
m s

m / s
RCτ  × =   

= =  

 
iv) Thermal System 

 
Equation of motion 

k

b

x

y

 

 

C

R

ie
oei

 
 

 

hH +

i
qQ +

R Resistance
οqQ +

C eCapacitanc

 valveLoad
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1 1
i

d
q

dt RC C

θ
θ+ =  

time constantRCτ = =  

with the units of [ ] [ ]
[ ]

[ ]
[ ]

o

o

Kcal
s

Kcal /
RC

C

s C
τ

   × =
  

= =  

Thus when a first order system is written in the form of 

Equation (1) with the coefficient of /dy dt  is equal to 1 and the coefficient of the dependant variable 

is ( )1/τ  in which τ  represents the time constant of the system and has always the dimension of 

time regardless of the physical system under consideration. 
 
Interest in Analysis of Dynamic Systems 
 
After obtaining a model of a dynamic system, one then needs to apply test signals to see if the system 
performs accordingly to certain design specifications put forward by the design of the system. In 
general, one requires the system to be  
 

1. stable ( system does not grow out unbounded ) 
2. with a fast response 
3. has a small error as possible (steady sate error). 

 
Other performance criteria may also exist but we will be mainly concerned with the above 
mentioned three. Usually the actual input to the dynamic system is unknown in advance; however, 
by subjecting the system to standard test signals, we can get an indication of the ability of the system 
performance under actual operating conditions. For example, the information we gain by analyzing 
the system stability and its speed of response and steady state error due to various types of standard 
test signals, will give an indication on the system performance under actual operating condition. 
 
Typical Test Signals 
 

i) Step Input 
 
Very common input to actual dynamic systems. As it represents a sudden change in the value of the 
reference input 

t

( )u t

1

 
 

ii) Ramp Input (Constant Velocity) 
 
This represents a situation where the input has a constant rate of increase with time (i.e. constant 
velocity) 

t

α

( )u t rt=

slope tan rα= =

 

 

iq oq
R

θ
=

Oven 

Temper re

 

atu

θ =
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iii) Parabolic Input (Constant Acceleration) 

 
Occurs in situation where the input has a constant acceleration. 

( )u t

t

2
( )u t at=

 
 

iv) Impulsive Load Input 
 

A large load over a short duration of time 0.1τ<<  = system time constant can be considered as an 

impulse. 

( ) strengtˆ h of imp eˆ, ls uF t F F tδ = ∆ =  

 

t

( )u t

t∆

F
impul

)

s

(

e 

u t t F= ∆

=

 

t

( )u t

ˆ( )u t F tδ=

 

 
v) Sinusoidal Load Input 

 

( )
sin

cos

A t
u t

B t

ω

ω


= 


 

 
 
 
 
 
 
Natural and Forced Response 
 

The solution ( )y t  to the homogeneous differential equation (1) is composed of two parts: 

 

■ Complementary solution: ( )cy t  natural response due to initial conditions. 

■ Particular solution : ( )py t  forced response 

 

such that:    ( ) ( ) ( )p cy t y t y t= +  
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Transient and Steady State Response 
■ Transient response: response from initial state to final state. 
■ Steady sate Response: response as time approaches ∞ . 

 

Step Response
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Notice that if ( )lim 0c
t

y t
→∞

=  and ( )lim p
t

y t
→∞

= a bounded function of time then the system is said 

to be steady state; where the steady state solution is  

( ) ( )lim limss c p
t t

y y t y t
→∞ →∞

= =   

 

8.2 TRANSIENT RESPONSE ANALYSIS OF FIRST-ORDER 
SYSTEM 

 
Rotor mounted in bearings is shown in the figure below. External torque ( )T t  is applied to the 

system. 
 

b

ω

J

( )T t

ω

bω

( )T t
J

 
Apply Newton’s second law for a system in rotation  
 

M J Jθ ω= =∑ �� �  

 

( ) ( ) ( )/ /J b T t b J T t Jω ω ω ω+ = ⇒ + =� �  

or 

( )
( )*1

/
T t

J b
ω ω+ =�  

Define the time constant ( )/J bτ = , the previous equation can be written in the form 

( ) ( )*1
, 0T tω ω ω ω

τ
+ = =

�
�  
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which represents the equation of motion as well as the mathematical model of the system shown. It 
represents a first order system.  
 

Free Response ( ) 0T t =  

 

To find the response ( )tω , take LT of both sides of the previous equation. 

( ) ( )
[ ]

( )
[ ]
�

1
0 0

LL

s s s

ωω

ω
τ

   
   Ω − + Ω =
   
    �

�������
 

 

( )
1

s s ω
τ

 
+ Ω = 

 
�
   ⇒  ( )

1
ω

τ
 

Ω = + 
 

�
s s  

 

Taking inverse LT of the above equation will give the expression of ( )tω  

 

( ) ( ) ( )/ /b J t t
t e e

τω ω ω− −
= =

� �
 

 
It is clear that the angular velocity decreases exponentially as shown in the figure below. Since 

( )/
lim 0;

t

t
e

τ−

→∞
=  then for such decaying system, it is convenient to depict the response in terms of a 

time constant.  
 
A time constant is that value of time that makes the exponent equal to -1. For this system, time 

constant /J bτ = . When t τ= , the exponent factor is 
 

( ) ( )/ / 1 0.368 36.8 %
t

e e e
τ τ τ− − −= = = =  

 

This means that when time constant τ= , the time response is reduced to 36.8 %  of its final value. 

We also have  

( )

( )

time constant/

0.37

4 0.02

J bτ

ω τ ω

ω τ ω

= =

=

=

�

�

 

ω
�

( )tω

t
τ 2τ 3τ 4τ

0.37 ω
�

0.02 ω
�
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 Forced Response ( ) 0T t ≠  

 
Remember 

( )*1
T tω ω

τ
+ =�  

To find the response ( )tω , take LT of both sides of the previous equation for zero initial conditions. 

( ) ( )
�

[ ]

( )
[ ]
�

( )*

0

1
0

ω

ω

ω
τ

=

Ω − + Ω =

�

������� L

L

s s s T s  

 

( ) ( )*1
s s T s

τ

 
+ Ω = 

 
 ⇒  

( )
( )*

1

1

s

T s
s

τ

Ω
=
 

+ 
 

 

The above equation can be written in the more general form as  

( )
( )

1

1

C s

R s
s

τ

=
 

+ 
 

 

where ( )C s  is the output or the response and ( )R s  is the input or reference signal. The above 

equation can be represented as  
 

( )
( )
1

1/
G s

s τ
=

+
( )R s ( )C s

Transfer Function

�����������

 
 
 i) Impulse Response 
 

In this case, for an unit impulse input of magnitude ( ) ( )δ=r t B t , 

 

( )R s B=  

 
and the above equation can be written in the form 

( )
1

B
C s

s
τ

=
 

+ 
 

 

from which  
 

( ) ( )1/ t
c t B e

τ−
=  

The figure below shows the response ( ) ( )1/ t
c t B e

τ−
= . Since we assumed zero I.C’s, the output 

must change instantaneously from 0  at time ( )0t
−=  to 1 at time ( )0t

+= . 
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B

( )c t

t

( ) ( )1/ t
c t B e

τ−
=

 
Figure . Impusle response of a first order system 

 

ii) Step Response  

 

In this case, for a unit step input of magnitude B , 
 

( )R s B s=  

 
and the above equation can be written in the form 
 

( ) 1 2

1 1

B a a
C s

s
s s s

τ τ

= = +
   

+ +   
   

 

where 

1

0

1

s

Bs
a B

s s

τ

τ
=

= =
 

+ 
 

 and  
2

1

1

1

s

B s

a B

s s

τ

τ
τ

τ
=−

 
+ 

 = = −
 

+ 
 

 

Therefore 
 

( )
1 1

B B B
C s

s
s s s

τ τ

τ τ

= = −
   

+ +   
   

 

for which  

( ) ( ) ( )( )1/ 1/
1

t t
c t B B e B e

τ ττ τ τ− −
= − = −  

The response ( )c t  is represented in the Figure below.  
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Figure   Step response of a first order system 

Time constant: It is the time for 

t

e τ
−

 to decay to 37 %  of its final value, i.e., 

1

0

0.37
t

t

e eτ
−

−

=

= =  

Alternatively, the time constant is the time it takes for a step response to rise to 63 %  of its final 

value, i.e., 

( ) ( )( ) ( )1/ 11 1 0.63
t

t t

c t B e B e B
τ

τ τ
τ τ τ− −

= =
= − = − =  

 

Rise Time: time for the response to go from 10 %  to 90 %  of its final value. The rise time rT  is 

found by solving the expression for the step response for the difference in time ( ) 0.9c t =  and 

( ) 0.1c t = , that is 

( )( )1/
1 0.9

t
B e B

ττ τ−
− =  

or 
( )( )

( ) ( )

1/

1/

0.9

1 0.9

0.1 / ln(0.1) 2.302 2.302

t

t

e

e t t

τ

τ τ τ

−

−

− =

= ⇒ − = = − ⇒ =
 

 
similarly 

 

( )( )1/
1 0.1

t
B e B

ττ τ−
− =  

or 
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( )( )
( ) ( )

1/

1/

0.1

1 0.1

0.9 / ln(0.9) 0.105 0.105

t

t

e

e t t

τ

τ τ τ

−

−

− =

= ⇒ − = = − ⇒ =
 

 
Hence , the rise time is  

0.9 0.1 2.2rT t t τ= − =  

Settling Time: time for the response to reach, and stay within 2 %±  of its final value. The settling 

time sT  is found by solving the expression ( ) 0.98c t = . Thus,  

 

( ) ( )( )1/
1 0.98

t
c t B e B

ττ τ−
= − =  

or 

( )( ) ( ) ( )1/ 1/
1 0.98 0.02 1/ ln(0.02)

t t
e e t

τ τ τ− −
− = ⇒ = ⇒ − =  

or 
 

ln(0.02) 4st T τ τ= = =  

Remarks:  
 

1. The smaller the time constant τ , the faster is the response and the furthest is the pole of  

( )
( )1/

B
C s

s s τ
=

+
 

2. Steady state error 
sse  due to step input 0.=  

3. The system is stable, i.e., ( ) ( )lim lim p
t t

c t c t
→∞ →∞

=  

provided that the pole 1/s τ= −  lies on the left half of 
the complex plane. 

 
iii) Ramp Response 

 

In this case, for a ramp input of slope B , 
 

( ) ( ) ( ) 2

B
r t B t R s L r t

s
= ⇔ = =    

 

and the expression of ( )C s  above can be written in the form 

 

( ) 1 2

2
2 1 1

B a a b
C s

s s
s s s

τ τ

= = + +
   

+ +   
   

 

where 

1/s τ= −

planes −

Re

Im
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2
2

1 2
2

0 0

d

1d 1

s s

Bs B
a B

s
s s s

τ

τ τ= =

  
   − = = = − 
     + +          

 

2

2
2

0 0

1 1

s s

Bs B
a B

s s s

τ

τ τ
= =

   
   

= = =   
      + +            

 

2

2
2 1/

1/

1

1
s

s

B s
B

b B
s

s s τ

τ

τ
τ

τ
=−

=−

  
+     = = =       +    

 

Therefore 

( )
2 2

2
2 1 1

B B B B
C s

s s
s s s

τ τ τ

τ τ

= = − + +
   

+ +   
   

 

 
Hence 

( ) ( ) ( ) ( )( )1/ 1/1 2 2 τ ττ τ τ τ τ τ− −−= = − + + = − +  
t t

c t L C s B B t B e B t e  

 

t

( )c t

( )r t B t=

( ) ( )( )1/ t
c t B t e

ττ τ τ −
= − +

τ

Bτ

 
 

Figure  Ramp response of a first order system 
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8.3 TRANSIENT RESPONSE ANALYSIS OF SECOND-ORDER 
SYSTEM 

 

Some Examples of Second Order Systems 

 

 
 
 

 Free Vibration without damping 

 
Consider the mass spring system shown in Figure 3-11. The equation of motion can be given 
by 
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0m x k x+ =��  

or 

20 0n

k
x x x x

m
ω+ = ⇒ + =�� ��  

where 

n

k

m
ω =  

is the natural frequency of the system and is expressed in rad/s. 

Taking LT of both sides of the above equation where ( )0x x=
�
 

and ( )0x x=
�

� �  gives 

k

m

( )x t  
Figure 8-11  Mass Spring 

System 

( ) ( ) ( )
[ ]

( )2 20 0 0ω− − + =

��

�
����������� n

L x

s X s sx x X s  

rearrange to get 

( )
complex c

2 2

onjugates

, Remember poles are ω
ω

+
= ⇒ = ±

+
� �
�

�����n

n

sx x
X s s j

s
 

2 2 2 2
( )

ω

ω ω ω
= +

+ +
�

�

�
n

n n n

x s
X s x

s s
 

and the response ( )x t  is given by 

( ) ( ) ( )sin cosn n

n

x
x t t x tω ω

ω
= +�

�

�
 

It is clear that the response ( )x t  consists of a sine and cosine terms and depends on the 

values of the initial conditions x
�
 and x

�
� . Periodic motion such that described by the above 

equation is called simple harmonic motion.  
 

planes −

Re

Im

nω

nω−

t

slope x=
�
�

Period
2

n

T
π

ω
= =

( )x t

 
Figure 8-12 Free response of a simple harmonic motion and pole location on the s-plane 

if ( )0 0,x x= =
�

� �   

( ) ( )cos nx t x tω=
�

 

 

 Free Vibration with Viscous damping 
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Damping is always present in actual mechanical systems, although in 
some cases it may be negligibly small. Consider the mass spring 
damper system shown in the figure. The equation of motion can be 
given by 

0m x bx k x+ + =�� �        (1) 

the characteristic equation of the above equation is 
2 0ms bs k+ + =       (2) 

and the two roots of this equation are 

2

1,2

4

2

b b m k
s

m

− ± −
=       (3) 

m

( )x t

k
b

 
Figure 8-13 

 
We consider three cases: 

 

• 
2 4 0b m k− <  Roots are complex conjugates (underdamped case) 

• 
2 4 0b m k− =  Roots are real and repeated 1 2s s=  (critically damped case) 

• 
2 4 0b m k− >  Roots are real and distinct (overdamped case) 

 

In solving equation (1) for the response ( )x t , it is convenient to define 

 

[ ]undamped natural frequency, rad/sn

k

m
ω = =  

 
and 

actual damping value
dampin gratio

critical damping value 2

b

km
ζ = = =  

 
and rewrite equation (2) in the form 

 
2 22 0ξω ω+ + =n ns s      (4) 

 
which is the standard form equation of a second order system. 

 

i) Underdamped  Case 0 1ξξξξ< << << << <   Taking LT of both sides of equation (1) 

where ( )0x x=
�
 and ( )0x x=

�
� � , and  rearrange to get 

 

( )
( )

2 2

2

2

n

n n

s x x
X s

s s

ξω

ξω ω

+ +
=

+ +
� �
�

     (5) 

knowing that equation (4) can be written as 

( ) ( )
2

22 2 22 1 0ξω ω ξω ω ξ+ + = + + − =
n n n n

s s s  

wich is a complete square equation. The nature of the roots 1s  and 2s  of equation (4) with 

varying values of damping ratio ξ  can be shown in the complex plane as shown in the figure 
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below. The semicircle represents the locus of the roots 1s  and 2s  for different values of ξ  

in the range 0 1ξ< <  

21ω ξ−
n

1s

2

1

2

2

1

1

ξω ω ξ

ξω ω ξ

= − + −

= − − −

n n

n n

s

s

ξ ω−
n

ω n

0ξ =

ω n

ω−
n

0ξ =

2s

1
s

2s

1 2 ω= = − ns s

for 1ξ >for 1ξ >

1ξ =

 
 

Define 

2 damped natural frequency 1  (rad/s)d nω ω ζ= − =  

 

 The relationship between ζ  and  the non-dimensional frequency ( )/
d n

ω ω  is shown 

the figure below. 
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Figure  Non-dimensional frequency versus the damping ratio. 

Then 

( )
( ) ( )

( )
( ) ( )

2 2 2 2

nn d

d n d n d

s xx x
X s

s s

ξωξω ω

ω ξω ω ξω ω

++
= × +

+ + + +

�� �
�

 

from which  
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( ) ( )1
sin cosn nt tn

d d

d

x x
x t L X s e t x e t

ξω ξωξω
ω ω

ω
− −− +

= = +  
� �

�

�
   (6) 

or 

( )
2

sin cos
1

nt

d d

d

x
x t e x t x t

ξω ξ
ω ω

ωξ

−
   

= + +   −   

�

� �

�
    (7) 

If the initial velocity ( )0 0,x =�  the above equation reduces to 

( )
2

sin cos
1

nt

d dx t x e t t
ξω ξ

ω ω
ξ

−
   

= +   −   
�

    (8) 

or 

( ) ( )sinnt

dx t C e t
ξω ω φ−= +       (9) 

where  
 

2

1 1
tan

ξ
φ

ξ
− −

=   and   
21

x
C

ξ
=

−

�
   (10) 

planes −

Re

Im

djω

djω−

nξω−

nω

1 n ds jξ ω ω= − +

2 n ds jξ ω ω= − −

t

( )x t

nt
Ce

ξω−

Damped period,
2

  
d

d

T
π

ω
=

 
 
 

Remarks: 
 

Notice that for this case (undedamped case ξ< <0 1) 

 
1. the response is a decaying sinusoid. 

2. the frequency of oscillations is ( )21d nω ω ξ= − . 

3. For positive damping ( )0ξ > , the poles 1s  and 2s  have negative real and lie 

entirely on the let half of the complex plane. As a result the transient response decays 
with time and the system is said to be stable. 

4. The rate at which the transient response decays depends on the coefficient nξω  of t  

in nt
e

ξω−
. Larger nξω  (i.e., smaller 1 n/ ξω ) leads to faster transient response (i.e., 

faster decay of ( )x t ). The term 1 n/ ξω  is in this case the time constant of the second 
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order system. Therefore, the time constant of the second order system can be made 

smaller (i.e., its speed faster) by moving the real part nξω−  farther away from the 

origin of the complex plane. 
 

ii) Critically damped  Case 1ζ =   In this case, the poles the poles 1s  and 2s  

become  

1 2 ns s ξω= = −  

 

and the response ( )x t  can be obtained from equation (5). Thus 

( )
( ) ( )

( )

( ) ( )

22 2

2

2

2

ω ω ω

ω ω ω

ω

ω ω

+ + + + +
= =

+ + +

+
= +

+ +

� � � � �

� � �

� �

�

n n n

n n n

n

n n

s x x s x x x
X s

s s s

x x x

s s

 

from which  

( ) ( )n nt t

nx t x e x x te
ξω ξωω− −= + +

� � �
�  

 
which is decaying exponentially as shown in the figure below 

 

planes −

Re

Im

nξ ω−

t

( )x t

x
�

 

iii) Overdamped  Case 1ξξξξ >>>>  In this case, the poles the poles 1s  and 2s  are 

both real  

2

1

2

2

1

1

n n

n n

s

s

ξω ω ξ

ξω ω ξ

= − + −

= − − −
 

and the response ( )x t  becomes 

( )
( )

( )

2

2

2
1

2 2

2
1

2 2

1

2 1 2 1

1

2 1 2 1

n n

n n

t

n

t

n

x
x t x e

x
x e

ξω ω ξ

ξω ω ξ

ξ ξ

ξ ω ξ

ξ ξ

ξ ω ξ

− + −

− − −

 − + − 
= − 

− −  

 + − 
+ + 

− −  

�

�

�

�

�

�

 

 
where the response is shown in the figure below 
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planes −

Re

Im

1s−

t

( )x t

x
�

2s−

Increasing ξ

 
Remarks: 

 

The response in this case (overdamped case 1ξξξξ >>>> ) is similar to that of the first order system 

and is the sum of two exponentials. The first has a time constant 11 s  and the other 21 s . 

The difference between these two time constants increases as the ξ  increases  so that the 

exponential term corresponding to the smaller one (i.e., 21 s ) decays much faster than that 

corresponding to 11 s . Under such case the second order system may be approximated by a 

first order one with time constant equals to 11 s . From study of the first order system we 

found that the response remains within 2 %  of its final value in 4t >  time constants 4τ=  

(τ = time constant). For a second order underdamped system 1 nτ ζω=   and the time 

required for the solution to remain within 2 %  of its final value is called the settling time sT  

which from above is given by 

( )4 4
s n

T τ ζω= =  

 
 

Free Response of a Second Order System by MATLAB 
 

MATLAB PROGRAM: 

 

>> wn=1; 

>> zeta=[0.2   0.5   0.7   1   2   5]; 

>> for k=1:6 
num=[0   0   wn^2]; 
den=[1   2*zeta(k)   wn^2]; 

sys=tf(num,den) 

impulse(sys); 
hold on 

>> end 
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Experimental Determination of damping ratio  
(Logarithmic Decrement) 

 
It is sometimes necessary to determine the damping ratios and damped natural frequencies of 
recorders and other instruments. To determine the damping ratio and damped natural 
frequency of a system experimentally, a record of decaying or damped oscillations, such as 
that shown in the Figure below is needed. 
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1t 2t 3t nt

1x

2x

3x

nx

2 1

2
d

d

d

T

t t T

π

ω
=

= +

2
d

d

T
π

ω
=

( )x t

t

 
 

( ) ( )

( ) ( )

1

2

1 1 1

2 2 2

cos

cos

n

n

t

d

t

d

x x t C e t

x x t C e t

ξω

ξω

ω φ

ω φ

−

−

= = −

= = −
 

The ratio 2

1

x

x
 is equal to 

( ) ( )
( )

2 1 22

1 1

cos

cos

n t t d

d

tx
e

x t

ξω ω φ

ω φ
− −

= ×
−

 

 

since 1t  and 2t  are selected dT  seconds apart, one can write 

( ) ( )( )
( )

( )

( )

2 1

1

1

1

cos cos

cos

cos 2

cos

d d d

d d d

d

d

t t T

t T

t

t

ω φ ω φ

ω ω φ

ω π φ

ω φ

− = + −

= + −

= + −

= −

 

Hence 

1

2

n dTx
e

x

ξω=  

 

The Logarithmic Decrement δ  is defined as the natural logarithm of the ratio of any 
two successive displacement amplitudes , so that by taking the natural logarithm  of both 
sides of the above equation 

 

2 2
1

2 2
ln

1 1

j

n d n

j n

x
T

x

π πζ
δ ζ ω ζ ω

ω ζ ζ+

 
= = = =   − − 

   (*) 

 

solving the above equation for ζ ,  
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( )
2 22

δ
ζ

π δ
=

+
 

 

Notice from Eq. (*) that if 1ζ <<  (that is, very low damping, which quantitatively means 

crb b<< ), 
21 1ζ− ≈  and thus  

2δ πζ=       (**) 

 

The figure below shows a comparison between Eqs. (*) and (**) versus the damping ratio ζ . 
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For non-successive amplitudes, say for amplitudes 

1
x  and 

1n
x + , where n  is an integer, we 

observe that 

1 1 2 3 4

1 2 3 4 5 1

n

n n

x x x x x x

x x x x x x+ +

= �  

 
Taking the natural logarithm of both sides of the above equation gives 
 

1 1 2

1 2 3 1

ln ln ln ln n

n n

x x x x

x x x x

nδ δ δ δ

+ +

      
= + + +      

      

= + + + =

�

�

 

So 

1 1

1

or
1 1

ln ln
1

n n

x x

n x n x
δ δ

+

   
= =   

−   
 

 
 

Table-1 Logarithmic decrement for Various Types of Structures 
 

Types of Structures Approximate Range of 
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Logarithmic Decrement, δ  

Multistory Steel Buildings 0.02 � 0.10 

Steel Bridges 0.05 � 0.15 

Multistory Concrete Buildings 0.10 � 0.20 

Concrete Bridges 0.1 0� 0.30 

Machinery Foundations 0.4 0� 0.60 

 

Example 
 

 
 

Step Response of a Second Order system: 
 

Consider the mechanical system shown in the Figure below. Assume that the system 

is at rest for 0.t <  At 0t = , the force 1( )u a t= •  [where a  is a constant and 1( )t is a step force 

of magnitude 1 N] is applied to the mass m . The displacement is measured from the 
equilibrium position before the input force u  is applied. Assume that the system is 

underdamped ( )1ζ <   

 

m

x

u

k

b

 
 

The equation of motion for the system is 
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1( )+ + =�� � im x bx k x a t  

 
 The TF for the system is 
 

( )
( ) 2

1
=

+ +

X s

U s m s bs k
 

 
Hence  

( )
( ) 2

21
= =

+ +   + +

a
X s a m

b kt m s bs k
s s

m m

L
 

Define 

[ ]undamped natural frequency, rad/sn

k

m
ω = =  

 
and 

actual damping value
dampin gratio

critical damping value 2

b

km
ζ = = =  

 
Then 

 

( )
( )

2

2 2 221

ω

ω ξω ω

 
=  

+ +    

n

n n n

X s a

m s stL
   (8-16) 

Hence, 
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where 
21ω ω ζ= −d n . The inverse Laplace transform of the last equation gives 

 

( ) 2 2

2 2

2
1

2 2

1 sin cos
1

1 sin cos
1

1
1 sin tan

1

ζω ζω

ζω

ζω

ζ
ω ω

ω ζ

ζ
ω ω

ω ζ

ζ
ω

ω ζζ

− −

−

−
−

 
= − − 

 − 

  
 = − + 

  −  

  −
 = − + 

  −   

n n

n

n

t t

d d

n

t

d d

n

t

d

n

a
x t e t e t

m

a
e t t

m

a e
t

m

 

 

The response starts from 0 0( )x =  and reaches ( ) 2ω∞ =
n

x a m . The general shape 

of the response curve is shown in the figure below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8-11 Step response of a 
second order system. The response 
curve shown corresponds to the 

case where 0.7ζ =  and 2
n

ω =  

rad/s. 
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Assume that the system is underdamped ( )1ζ <   

 

MATLAB PROGRAM: 

 

>> wn=1; 

>> zeta=[0.2   0.5   0.7   1   2   5]; 

>> for k=1:6 
num=[0   0   wn^2]; 
den=[1   2*zeta(k)   wn^2]; 

sys=tf(num,den) 
step(sys); 
hold on 

2

2 22

n

n n
s s

ω

ζ ω ω+ +
�

( )

I

U s

nput �
( )

Ou

X s

tput

?

tt

( )x t( )u t

1
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>> end 
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Impulse Response of a Second Order system: 
 

MATLAB PROGRAM: 
 

>> wn=1; 

>> zeta=[0.2   0.5   0.7   1   2   5]; 

>> for k=1:6 
num=[0   0   wn^2]; 

den=[1   2*zeta(k)   wn^2]; 
sys=tf(num,den) 
impulse(sys); 

hold on 

>> end 
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Table 8.1 The Response of the First Order Linear System 

( ) ( )
1

, 0y y u t y y
τ

+ = =
� �

�  where ( ) ( ) =  an inpud ou ut ttp = u ty t
�

 

Input  Response ( )y t  if ( )0y y=
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 - 
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Table 8.2 The Free Response of the Second Order Linear System 

( ) ( )0, 0 and 0 mx bx kx x x x x+ + = = =
� �
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The natural frequency 
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Table 8.3 The Forced Response of the Second Order Linear System 

( ) ( ) ( ), and0 0 0 0mx bx kx f t x x+ + = = =�� � �  

 

The natural frequency 
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