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CHAPTER 6

ELECTRICAL SYSTEMS AND
ELECTROMECHANICAL SYSTEMS

A. Bazoune

6.1 INTRODUCTION

The majority of engineering systems now have at least one electrical subsystem. This
may be a power supply, sensor, motor, controller, or an acoustic device such as a speaker. So
an understanding of electrical systems is essential to understanding the behavior of many
systems.

6.2 ELECTRICAL ELEMENTS

Current and Voltage Current and voltage are the primary variables used to
describe a circuit’s behavior. Current is the flow of electrons. It is the time rate of change of
electrons passing through a defined area, such as the cross-section of a wire. Because
electrons are negatively charged, the positive direction of current flow is opposite to that of
electron flow. The mathematical description of the relationship between the number of

electrons ( called charge ¢ ) and current 7 is

iZ% or q(t)ZJ.idt

The unit of charge is the coulomb (C) and the unit of current is ampere (A), which is one
coulomb per second.

Energy is required to move a charge between two points in a circuit. The work per
unit charge required to do this is called wvoltage. The unit of voltage is volt (V), which is
defined to be joule per coulomb. The voltage difference between two points in a circuit is a
measure of the energy required to move charge from one point to the other.

Active and Passive Elements. Circuit elements may be classified as
active or passive.

® Passive Element: an element that contains no energy sources (i.e. the element
needs power from another source to operate); these include resistors,

capacitors and inductors

e Active Element: an element that acts as an energy source; these include
batteries, generators, solar cells, and op-amps.
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Current Source and Voltage Source A wvoltage source is a device that
causes a specified voltage to exist between two points in a circuit. The voltage may be time
varying or time invariant (for a sufficiently long time). Figure 6-1(a) is a schematic diagram of
a voltage source. Figure 6-1(b) shows a voltage source that has a constant value for an
indefinite time. Often the voltage is denoted by E or V' . A battery is an example of this type
of voltage.

A current source causes a specified current to flow through a wire containing this
source. Figure 6-1(c) is a schematic diagram of a current source

—o0 Ii—o
e(r) é Circuit E Circuit
A L1,
(a 19
—o
i (t) é; Circuit
S
(c
Figure 6.1 (a) Voltage source; (b) constant voltage source; (c) current source
Resistance elements. The resistance R of a linear resistor is given by

R =Er
l
where €, is the voltage across the resistor and I is the current through the resistor. The unit

of resistance is the ohm (Q) , where

volt R

ohm=———
ampere *W

! ‘4— € —»

Resistances do not store electric energy in any form, but instead dissipate it as heat. Real
resistors may not be linear and may also exhibit some capacitance and inductance effects.

PRACTICAL EXAMPLES: Pictures of various types of real-world resistors are found below.

Wirewound Resistors Wirewound Resistors in Parallel
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Wirewound Resistors in Series and in Parallel

Capacitance Elements. Two conductors separated by a nonconducting
medium form a capacitor, so two metallic plates separated by a very thin dielectric material
form a capacitor. The capacitance C is a measure of the quantity of charge that can be stored
for a given voltage across the plates. The capacitance C of a capacitor can thus be given by

where g is the quantity of charge stored and e_ is the voltage across the capacitor. The unit

of capacitance is the farad (F) , Where

C
farad = ampere-second _ coulomb > ”
volt volt l L e 4

Notice that, since i =dq /df and e, =q /C , we have

i =c 9
dr
or
1.
de, =—idt
C
Therefore,

15,
e, =E£l dr +e_(0)

Although a pure capacitor stores energy and can release all of it, real capacitors exhibit
various losses. These energy losses are indicated by a power factor , which is the ratio of
energy lost per cycle of ac voltage to the energy stored per cycle. Thus, a small-valued power
factor is desirable.

PRACTICAL EXAMPLES: Pictures of various types of real-world capacitors are found
below.
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Inductance Elements. If a circuit lies in a time varying magnetic field, an
electromotive force is induced in the circuit. The inductive effects can be classified as self
inductance and mutual inductance.

Self inductance, or simply inductance, L is the proportionality constant between the

induced voltage €, volts and the rate of change of current (or change in current per second)
di / dr amperes per second; that is,

__%

 di/dr
The unit of inductance is the henry (H). An electrical circuit has an inductance of 1 henry
when a rate of change of 1 ampere per second will induce an emf of 1 volt:

L
volt weber
henry = = —p o (YYYY
ampere/second ampere i ‘
-« ¢
The voltage e, across the inductor L is given by

di

e, =L—*
ds

Where i, is the current through the inductor. The current i, (t ) can thus be given by
1 t
i,(r)= —IeLdt +i, (0)
Ly
Because most inductors are coils of wire, they have considerable resistance. The energy loss

due to the presence of resistance is indicated by the quality factor Q , which denotes the ratio
of stored dissipated energy. A high value of ) generally means the inductor contains small

resistance.
Mutual Inductance refers to the influence between inductors that results from interaction of
their fields.

PRACTICAL EXAMPLES: Pictured below are several real-world examples of inductors.
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CME375 CME2425 CMT908-Y CMToos-H
TABLE 6-1.  Summary of elements involved in linear electrical systems
Impedance
Element Voltage-current C t-volt Voltage-charge ’
ge-cu urrent-voltage g g 2(s)=V(s)I(s)
Capacitor : d
v() =1 [i)az in=c W v =L q(0) €
H I_ o dt c Cs
Resistor 1 d
Inductor , 2
di(r) . 1 d “q(t)
H)y=L—— 1 =—|v(r)dr v(t)=L Ls
YL |t | eme et

The following set of symbols and units are used: v(t) = V (Volts), i(t) = A (Amps), q(t) = Q
(Coulombs), C =F (Farads), R = Q (Ohms), L = H (Henries).

6.3 FUNDAMENTALS OF ELECTRICAL CIRCUITS

Ohm’s Law. Ohm’s law states that the current in circuit is proportional to the

total electromotive force (emf) acting in the circuit and inversely proportional to the total
resistance of the circuit. That is

I =—
R

were [ is the current (amperes), € is the emf (volts), and R is the resistance (ohms).

Series Circuit. The combined resistance of series-connected resistors is the sum
of the separate resistances. Figure 6-2 shows a simple series circuit. The voltage between
points A and B is

e=e te,te,
where
e, =i R,

e,=IR,, e;=1R,
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Thus,

©=R,+R,+R,
l

The combined resistance is given by

R =R,+R,+R,

In general,

R, R, R,
O—»y—/\/\/\/—o——>—o—/\/\/\/—o——>—o—/\/\/\/—o—o
A l <—el—> L L— eZ—J l - e, —™ B
- e >
Figure 6-2 Series Circuit
Parallel Circuit. For the parallel circuit shown in figure 6-3,
i
(o, -
- Y. I
L L
e R, R, R,
o
Figure 6-3 Parallel Circuit
. e . e e
L=— l,=—, s =
R 1 R 2 R 3

Since | =i, +1, +1i,, it follows that]

. e e e e
l=—+—+—=—
Rl R 5 R 3 R
where R is the combined resistance. Hence,
1 1 1 1
R Rl R 5 R 3

or
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1 RR,R,
Req4——7—7-+
1,1 1 RR,+RR,+RR,
Rl R2 R3

In general

Kirchhoff’s Current Law (KCL) (Node Law). A #node in an

electrical circuit is a point where three or more wires are joined together. Kirchhoff’s Current
Law (KCL) states that

‘The algebraic sum of all currents entering and leaving a node is zero.

or

The algebraic sum of all currents entering a node is equal

to the sum of all currents leaving the same node .

Figure 6-4 Node.

As applied to Figure 6-4, kirchhoff’s current law states that

i, +i,+i;—i,—i;=0
or

i +i,+i, = i,+1i;

%r_/

Entering currents ~ Leaving currents

Kirchhoff’s Voltage Law (KVL) (Loop Law).  Kirchhoff's Voltage

Law (KVL) states that at any given instant of time

‘The algebraic sum of the voltages around any loop in an electrical circuit is zero.‘

or

‘The sum of the voltage drops is equal to the sum of the voltage rises around a loop.|
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" ' | C ¢p=~E (b) R Cip= “Ri
| A
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Figure 6-5 Diagrams showing voltage rises and voltage drops in circuits. (Note: Each circular
arrows shows the direction one follows in analyzing the respective circuit)

A rise in voltage [which occurs in going through a source of electromotive force from the
negative terminal to the positive terminal, as shown in Figure 6-5 (a), or in going through a
resistance in opposition to the current flow, as shown in Figure 6-5 (b)] should be preceded
by a plus sign.

A drop in voltage [which occurs in going through a source of electromotive force from the
positive to the negative terminal, as shown in Figure 6-5 (c), or in going through a resistance
in the direction of the current flow, as shown in Figure 6-5 (d)] should be preceded by a
minus sign.

Figure 6-6 shows a circuit that consists of a battery and an external resistance.

> s B
l
+
E ——
A R
r
° C
Figure 6-6 Electrical Circuit.

Here E is the electromotive force, r is the internal resistance of the battery, R is the
external resistance and i is the current. Following the loop in the clockwise
direction (A —-B —>C —=D ), we have

€, tey te, =0

or
E —iR —ir=0
From which it follows that
. E
1 =
R+r
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64 MATHEMATICAL MODELING OF ELECTRICAL SYSTEMS

The first step in analyzing circuit problems is to obtain mathematical models for the
circuits. (Although the terms circuit and nerwork are sometimes used interchange-
ably, network implies a more complicated interconnection than circuit.) A mathe-
matical model may consist of algebraic equations, differential equations,
integrodifferential equations, and similar ones. Such a model may be obtained by
applying one or both of Kirchhoff’s laws to a given circuit. The variables of interest
in the circuit analysis are voltages and currents at various points along the circuit.

In this section, we first present the mathematical modeling of electrical circuits
and obtain solutions of simple circuit problems. Then we review the concept of com-
plex impedances, followed by derivations of mathematical models of electrical circuits.

Example 6-1

Consider the circuit shown in Figure 6-11. Assume that the switch S is open forr < 0
and closed at + = 0. Obtain a mathematical model for the circuit and obtain an equa-
tion for the current i(r).

By arbitrarily choosing the direction of the current around the loop as shown in
the figure. we obtain

di .
E—LE Ri=0
or
di
L— + Ri=F 6-3
0 i (6-3)

This is a mathematical model for the given circuit. Note that at the instant switch § is
closed the current i(0) is zero, because the current in the inductor cannot change from
zero to a finite value instantaneously. Thus. /(0) = 0.

Let us solve Equation (6-3) for the current i(r). Taking the Laplace transforms of
both sides. we obtain

LisI(s) — i(0)] + RI(s) = ?
Noting that i(0) = 0. we have

(Ls + R)I(s) =

“ M

\ i
—o” oI
? "
i
Figure 6-11 Electrical circuit.
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i) §
B[ e
R 1
/]
i
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0.632 A ;‘* ‘
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/ |
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f l
Figure 612 Plot of i() versus ¢ for the o -
circuit shown in Figure 6-11 when switch § 0 L {
is closed atr = 0. R
or
PR - - R N
s(Ls + R) Rls s+ (R/IL)]

The inverse Laplace transform of this last equation gives
E
i(r)y = —[1 — e7Rly (6-4)
R
A typical plot of i(f) versus 1 appears in Figure 6-12.

Example 6-2

Consider again the circuit shown in Figure 6-11. Assume that switch § is open for
1 < 0. it is closed at r = 0, and is open again at r = r; > 0. Obtain a mathematical
model for the system, and find the current i(r) fort = 0.

The equation for the circuit is

di
Lj+Ri=E i0)=0 4>1=0 (6-5)
From Equation (6—4). the solution of Equation (6-5) is
: E (R Ly
;(r)=}?ll—e' 7 n>t=0 (6-6)
At = 1y, the switch is opened. The equation for the circuit for r = ¢, is
di
LY 4 Ri=0 = (6-7)
dr
where the initial condition at 1 = 1, is given by
E
() = H[1 = et (6-8)

(Note that the instantaneous value of the current at the switching instant r = 1, serves
as the initial condition for the transient response for ¢ = t,.) Equations (6-5). (6-7).
and (6-8) constitute a mathematical model for the system.

Now we shall obtain the solution of Equation (6-7) with the initial condition
given by Equation (6-8). The Laplace transform of Equation (6-7), with 1 = 1, the ini-
tial time. gives

Lisl(s) — i(t;)] + RI(s) =0
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ir)
£ . ————
R ToimEEe
(I—e_fﬁﬁ)% _______ I’f’
|
|
' Figure 6-13 Plot of i(r) versus ¢ for the
) circuit shown in Figure 6-12 when switch §
0 1 ! is closed at t = 0 and opened at t = ¢,.
or
(Ls + R)I(s) = Li())
Hence.
Li(t) E : 1
I(s) = — == - —(RIL) s 5-9
O =s+r g I s RiD) (6-9)
The inverse Laplace transform of Equation (6-9) gives
E [ R/ Mo —
f(f) = Ell _ e—‘.R-.’,\M]C (RILMr—1p) r =1 (6—10)
Consequently, from Equations (6-6) and (6-10). the current i(7) for + = 0 can be
written
i
i(r) = E[l — e lH-:’.):] HW>1r=0
/3 e
= —[1 — =(RIL W~ (RIL)ir—1y) =
R[ € le 1

A typical plot of i(r) versus ¢ for this case is given in Figure 6-13.

Example 6-3

Consider the electrical circuit shown in Figure 6-14. The circuit consists of a resistance
R(in ohms) and a capacitance C (in farads). Obtain the transfer function £,(s)/E(s).
Also, obtain a state-space representation of the system.

Applying Kirchhoff’s voltage law to the system, we obtain the following equations:

|
RE+E]idr

C[l/idr =e, (6-12)

The transfer-function model of the circuit can be obtained as follows: Taking the Laplace
transform of Equations (6-11) and (6-12). assuming zero initial conditions. we get

2 (6-11)

RI(s) + é_%[(s) = E(s)
11
7 1) = Efs)
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R
.f/\- oL
€; | - €,
i 4/
Figure 6-14 RC circuit. o 0

Assuming that the input is ¢; and the output is e, the transfer function of the system is

11

E(s)  Cs'®) o1

E(s) (R R ll), "~ RCs + 1 -
o3 )1

This system 1s a first-order system.
A state-space model of the system may be obtained as follows: First, note that,
from Equation (6-13). the differential equation for the circuit is

RCé(J + er: = e(

If we define the state variable

x = e,
and the input and output variables
u = e, y=e,=X
then we obtain
. 1
X = —peX + RCY
y=x

These two equations give a state-space representation of the system.

Example 64

Consider the electrical circuit shown in Figure 6—15. The circuit consists of an inductance

L (in henrys). a resistance R (in ohms),and a capacitance C (in farads). Obtain the trans-

fer function E,,(s5)/E;(s). Also. obtain a state-space representation of the system.
Applying Kirchhoff’s voltage law to the system, we obtain the following equations:

di 1
L—+ Ri+—=[idt=e¢ 6-14
dr i C‘/rldt 2 (6-14)
1
E[:’df =g, (6-15)
1 R
—
€ F\ C = €,
P S
o o

Figure 6-15 Electrical circuit.
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The transfer-function model of the circuit can be obtained as follows: Taking the
Laplace transforms of Equations (6-14) and (6-15), assuming zero initial conditions,

we get
11
Lsl(s) + RI(s) + =—1(s) = E,(s)
Cs
11
E;I(S) - E,,(.S')
Then the transfer function E,(s)/E,(s) becomes

E,(s) 1
= - — (6-16)
Ef(s) LCs* + RCs + 1
A state-space model of the system may be obtained as follows: First, note that,
from Equation (6-16), the differential equation for the system is

Then. by defining state variables

X =e,
Xz = ¢,
and the input and output variables
U =e
y =6, =x
we obtain
o 0 1 X 0
|- el L
2 rc L) LLe
and

y= UI[I']

Lx2

These two equations give a mathematical model of the system in state space.

Transfer Functions of Cascade Elements. Consider the system
shown in Figure 6.18. Assume ¢, is the input and e, is the output. The capacitances C, and

C, are not charged initially. Let us find transfer function E, () / E(s).

Figure 6-18 Electrical system
The equations of this system are:

Loopl R, +Ci [(i,—i,)dt =e, (6-17)

1
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Loop2 -grjul—5)d;+5;54~£515d1=() (6-18)

1 2

Outer Loop Cijizdt =e, (6-19)

2

Taking LT of the above equations, assuming zero I. C’'s, we obtain

1
R111(S)+C_1S[11(S)_12(S)]:Ei(s) (6-20)
1 1
C_IS[Il(S)_Iz(S)]+R212(S)+C_Zslz(s)—0 (6-21)
Cizslz(s)=Eu(s) (6-22)
From Equation (6-20)
1 1
R I, (S)+C_1sll (S)_C_lslz (S) =E (S)
1
B ) en)
(s)= RCs+1 RCs+l1
Cs

Substitute /, (s) into Equation (6-21)

() 1

EI
E, (s) RCR.C,s*+(RC, +R,C,+RC,)s+1

— 1/R1C1R2C2
S2+(R1C1+R2C2+R1C2)S+ 1
Rl Cl RZ CZ Rl Cl RZ C2

which represents a transfer function of a second order system. The characteristic polynomial
(denominator) of the above transfer function can be compared to that of a second order

system s” +2{@,s+ @, . Therefore, one can write

@ = 1 and 2w = (RC,+R,C,+RC,)
RICIRZCZ Rl CIRZCZ
(RC,+R,C,+RC,) (RC,+R,C,+RC,)

or = =
d 20, (R1C1R2C2 ) 2JRCR,C,

Complex Impedance. In deriving transfer functions for electrical
circuits, we frequently find it convenient to write the Laplace-transformed equations directly,
without writing the differential equations.

Table 6-1 gives the complex impedance of the basics passive elements such as
resistance R, an inductance L, and a capacitance C. Figure 6-19 shows the complex
impedances Z, and Z, in a series circuit while Figure 6-19 shows the transfer function
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between the output and input voltage. Remember that the impedance is valid only if the
initial conditions involved are all zeros.
The general relationship is

E(s)=Z(s)1(s)

corresponds to Ohm’s law for purely resistive circuits. (Notice that, like resistances,
impedances can be combined in series and in parallel)

o= zl=z}=o

- € —»a— €

-« ¢ —————————————————»

E(s
z=7+7 -E®
1(s)
Figure 6-19 Electrical circuit

Deriving Transfer Functions of Electrical Circuits Using

Complex Impedances. The TF of an electrical circuit can be obtained as a ratio
of complex impedances. For the circuit shown in Figure 6-20, assume that the voltages ¢, and

e, are the input and output of the circuit, respectively. Then the TF of this circuit can be
obtained as

Es) Z6Is) 70 ¢ (npu) ¢ (output)
E.(s) Zl(s)I(s)+Zz(s)I(s) Z,(s)+Z,(s) l l
O O
For the circuit shown in Figure 6-21, Figure 6-20 Electrical circuit
1
Z, =Ls+R, Z,=—
Cs
Hence, the transfer function M , 18
E.(s)
1
E,()_ Z,(9)  _ Cs _ 1
E(s) Z/(s)+Z,(s) Ls+R+i LCs*> +RCs +1
Cs
Z 1
| oo— 1
o—r MM AN— o
L
T I R L= J: 1 T
L e e — — -
e. (input) Zzl C | e, (output)
: -4
O O Figure 6-21 Electrical circuit
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6.5

ANALOGOUS SYSTEMS

Systems that can be represented by the same mathematical model, but that are physically
different, are called analogous systems. Thus analogous systems are described by the same
differential or integrodifferential equations or transfer functions.

The concept of analogous is useful in practice, for the following reasons:

1. The solution of the equation describing one physical system can be directly
applied to analogous systems in any other field.

2. Since one type of system may be easier to handle experimentally than another,
instead of building and studying a mechanical system (or a hydraulic system,
pneumatic system, or the like), we can build and study its electrical analog, for
electrical or electronic system, in general, much easier to deal with
experimentally.

Mechanical-Electrical Analogies Mechanical ~systems can be
studied through their electrical analogs, which may be more easily constructed than models
of the corresponding mechanical systems. There are two electrical analogies for mechanical
systems: The Force-Voltage Analogy and The Force Current Analogy.

Force Volta ge Analo gy Consider the mechanical system of Figure 6-24(a)
and the electrical system of Figure 6-24(b).

(a (b)

Figure 6-24  Analogous mechanical and electrical systems.

The equation for the mechanical system is

d*x dx
m—s-+b—+kx= 6-24
ac i P (€29

where x is the displacement of mass m , measured from equilibrium position. The equation

for the electrical system is

L£+Ri+ljidt:e
dt C

In terms of electrical charge ¢, this last equation becomes
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d’q dg 1
L——+R—+—qg=e¢ 6-25
dar’ a ¢! (62)

Comparing equations (6-24) and (6-25), we see that the differential equations for the two
systems are of identical form. Thus, these two systems are analogous systems. The terms that
occupy corresponding positions in the differential equations are called analogous quantities,
a list of which appear in Table 6-2

TABLE 6-2  Force Voltage Analogy

Mechanical Systems Electrical Systems
Force p (Torque T) Voltage e
Mass m (Moment of inertia J') Inductance L
Viscous-friction coefficient b Resistance R
Spring constant k Reciprocal of capacitance, 1/C
Displacement x (angular displacement &) Charge ¢
Velocity i (angular velocity ) Current i

Force Current Analogy The student is advised to read this section from
the textbook Page 272-273.

6.6 MATHEMATICAL MODELING OF ELCTROMECHANICAL
SYSTEMS

To control the motion or speed of dc servomotors, we control the field current or
armature current or we use a servodriver as motor-driver combination. There are many
different types of servodrivers. Most are designed to control the speed of dc servomotors,
which improves the efficiency of operating servomotors. Here we shall discuss only armature
control of a dc servomotor and obtain its mathematical model in the form of a transfer
function.
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Armature control of dc servomotors. Consider the armature-controlled
dc servomotor shown in Figure 6-27, where the field current is held constant. In this

system,

R, = armature resistance, {1

L, = armature inductance, H

i, = armature current, A

ir = field current, A

= applied armature voltage, V

= back emf,V

= angular displacement of the motor shaft, rad

= torque developed by the motor, N-m

= m0m§nt of inertia of the motor and load referred to the motor shaft,

kg-m*

b = viscous-friction coefficient of the motor and load referred to the motor

shaft, N-m/rad/s

N &

The torque 7T developed by the motor is proportional to the product of the
armature current /, and the air gap flux ¢, which in turn is proportional to the field

current, or
¥ = Kyig
where K/ is a constant. The torque T can therefore be written as
T = KsisKi,

where K is a constant.
For a constant field current, the flux becomes constant and the torque

becomes directly proportional to the armature current, so
T = Ki,

where K is a motor-torque constant. Notice that if the sign of the current i, is
reversed, the sign of the torque T will be reversed. which will result in a reversal of

the direction of rotor rotation.
-
U]
b

i, = constant

Figure 6-27 Armature-controlled
dc servomotor.
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When the armature is rotating, a voltage proportional to the product of the
flux and angular velocity is induced in the armature. For a constant flux, the induced
voltage e, is directly proportional to the angular velocity df/dt. or

do
ep = Kp— 6-30)
b b (6-30)
where ¢, is the back emf and K, 1s a back-emf constant.
The speed of an armature-controlled dc servomotor is controlled by the arma-
ture voltage e,. The differential equation for the armature circuit 1s

di,
L, + Ry, + e, = ¢, (6-31)
dt
The armature current produces the torque that 1s applied to the inertia and friction:
hence.
d‘e de
J—+b— =T =Ki 6-32
dr? di fa ( )

Assuming that all initial conditions are zero and taking the Laplace transforms of
Equations (6-30). (6-31). and (6-32), we obtain the following equations:

Kys0(s) = Ey(s) (6-33)
(Las + Ry)Ia(s) + Ep(s) = Eq(5) (6-34)
(Js2 + bs)O(s) = T(s) = KI,(s) (6-35)

Considering E,(s) as the input and @(s) as the output and eliminating /,(s) and
E,(s) from Equations (6-33), (6-34), and (6-35). we obtain the transfer function for
the dc servomotor:

O(s) K

- ; 6-36
EJ(s)  S[LgJs* + (Lsb + RyJ)s + Rob + KKy (6-36)

The inductance L, in the armature circuit is usually small and may be neglect-
ed.If L, is neglected. then the transfer function given by Equation (6-36) reduces to

K
G5 R,J
(s) = K = : (6-37)
E.s) s(R,Js + R,b + KK}) ( . R,b + KK,,)
MR e —
R,J

Notice that the term (R,b + KK,)/(R,J) in Equation (6-37) corresponds to the
damping term. Thus, the back emf increases the effective damping of the system.
Equation (6-37) may be rewritten as

— “ (6-38)
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Figure 6-28 Gear train system.
where

K, = K/I(R,b + KK,) = motor gain constant
T, = R,J/(R,b + KK,) = motor time constant

Equation (6-38) is the transfer function of the dc servomotor when the armature
voltage e,(r) is the input and the angular displacement 6(¢) is the output. Since the
transfer function involves the term 1/s. this system possesses an integrating proper-
ty. (Notice that the time constant 7,, of the motor becomes smaller as the resistance
R, is reduced and the moment of inertia J is made smaller.)

Gear train. Gear trains are frequently used in mechanical systems to reduce
speed, to magnify torque, or to obtain the most efficient power transfer by matching
the driving member to the given load. Figure 628 illustrates a simple gear train sys-
tem in which the gear train transmits motion and torque from the input member to
the output member. If the radii of gear 1 and gear 2 are r| and r,, respectively, and
the numbers of teeth on gear | and gear 2 are n; and n,, respectively. then

no_m
s s
Because the surface speeds at the point of contact of the two gears must be 1denti-
cal, we have
hwy = rw;
where w; and w- are the angular velocities of gear 1 and gear 2, respectively. Therefore.
w- 8] n

wq 4] s

If we neglect friction loss, the gear train transmits the power unchanged. In other
words. if the torque applied to the input shaft is 7| and the torque transmitted to the
output shaft is 75, then

N, = Thu,

Example 6-7

Consider the system shown in Figure 6-29. Here. a load is driven by a motor through the
gear train. Assuming that the stiffness of the shafts of the gear train is infinite. that there
is neither backlash nor elastic deformation. and that the number of teeth on each gear is
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