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4444....1111 INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION    

Transfer functions (TF)are frequently used to characterize the input-output 
relationships or systems that can be described by Linear Time-Invariant (LTI) 

differential equations. 

 

Transfer Function (TF)Transfer Function (TF)Transfer Function (TF)Transfer Function (TF). The transfer function (TF) of 

a LTI differential-equation system is defined as the ratio of the Laplace 
transform (LT) of the output (response function) to the Laplace transform 

(LT) of the input (driving function) under the assumption that all initial 
conditions are zero. 

 

Consider the LTI system defined by the differential equation 
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where y  is the output and x  is the input. The TF of this system is the ratio 
of the Laplace-transformed output to the Laplace-transformed input when all 

initial conditions are zero, or  
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The above equation can be represented by the following graphical 
representation: 
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Figure 4-1. Block diagram representation of a transfer function 
 

 

Comments on the Transfer Function (TF)Comments on the Transfer Function (TF)Comments on the Transfer Function (TF)Comments on the Transfer Function (TF). The 
applicability of the concept of the Transfer Function (TF) is limited to LTI 

differential equation systems. The following list gives some important 
comments concerning the TF of a system described by a LTI differential 

equation: 
 

1. The TF of a system is a mathematical model of that system, in that it 

is an operational method of expressing the differential equation that 
relates the output variable to the input variable. 

 
2. The TF is a property of a system itself, unrelated to the magnitude and 

nature of the input or driving function. 

 
3. The TF includes the units necessary to relate the input to the output; 

however it does not provide any information concerning the physical 
structure of the system. (The TF of many physically different systems 

can be identified). 
 

4. if the TF of a system is known , the output or response can be studied 

for various forms of inputs with a view toward understanding the 
nature of the system. 

 
5. If the TF of a system is unknown, it may be established experimentally 

by introducing known inputs and studying the output of the system. 

Once established, a TF gives a full description of the dynamic 
characteristics of the system, as distinct from its physical description 

 

 

Example 4-1 

 

Consider the mechanical system shown in Figure 4-2. The displacement x  of 
the mass m  is measured from the equilibrium position. In this system, the 

external force ( )f t  is input and x  is the output. 

 

i) The FBD is shown in the Fig. 4-2. 
ii) Apply Newton’s second law of motion to a system in translation: 
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Figure 4-2  Mass -Spring –Damper System and the FBD. 
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or 

 

( )+ + = ⇒�� � Forced Vibration of a second order systemmx bx kx f t  

 

iii) For zero Initial Conditions (I.C’s), taking Laplace Transform (LT) of 
both sides of the above equation yields 

 

( ) ( )2 + + = ( )m s b s k X s F s  

 

where ( ) ( ) =  X s x tL  and ( ) ( ) =  F s f tL . From Equation (4-

2), the TF for the system is 
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Impulse Response Function.Impulse Response Function.Impulse Response Function.Impulse Response Function. The TF of a LTI system is  

 

 ( )
( )

= =Transfer Function (TF)
( )

Y s

X
s

s
G  

 

where ( )X s  is the LT of the input ( )x t  and ( )Y s  is the LT of the output 

( )y t  and where we assume all I.C’s involved are zero. It follows that 

 

 ( ) ( )= ( )G sY s X s  (4-3) 

 
Now, consider the output (response) of the system to a unit-impulse 

( )δ t  input when all the I.C’s are zero. Since  
 

( ) 1δ =  tL  

 

the LT of the output of the system is 
 

 ( ) ( )=Y s G s  (4-4) 

 

The inverse LT of the output of the system is given by Equation 4-4 yields 
the impulse response of the system, i.e; 

 

 ( ) ( )=  
-1 G s g tL   

 
is called the impulse response function or the weighting function, of the 

system. The impulse-response function ( )g t  is thus the response of a linear 

system to a unit impulse input when the I.C’s are zero. The LT of ( )g t  gives 

the TF. 
 

 

4444....2222 Block Diagrams (BD)Block Diagrams (BD)Block Diagrams (BD)Block Diagrams (BD)    
 

Block Diagrams of Dynamic SystemsBlock Diagrams of Dynamic SystemsBlock Diagrams of Dynamic SystemsBlock Diagrams of Dynamic Systems 
 

A Block Diagram (BD) of a dynamic system is a pictorial 
representation of the functions performed by each component of the system 
and of the flow signal within the system. Such a diagram depicts the 

interrelationships that exist among the various components. 
 

• In a BD, all system variables are linked to each other through 
functional blocks.  
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• The functional block, or simply block, is a symbol for the 
mathematical operation on the input signal to the block that produces 

the output. 
 

• The TF’s of the components are usually entered in the corresponding 
blocks, which are connected by arrows to indicate the direction of the 
flow signal.  

 
• Notice that a signal can pass only in the direction of the arrows. Thus, 

a block diagram of a dynamic system explicitly shows a unilateral 
property. 

 

Figure 4-3 shows an element of a BD . The arrowhead pointing toward the 
block indicates the input to the block, and the arrowhead leading away 

from the block represents the output of the block. As mentioned, such 
arrows represent signals. 

 

( )C s( )R s

( ) ( ) ( )=C s R s G s

( )G s

 
Figure 4-3  Element of a Block Diagram (BD). 

 
Note that  

 

[ ] [ ] [ ]×Dimension of the output signal Dimension of the input signal Dimension of the TF =  

 
Notice that in BD the main source of energy is not explicitly shown and that 

the BD of a given system is not unique. A number of different BD’s can be 
drawn for a system, depending on the point of view of the analysis (See 

Example 4-2). 
 

Summing Point.Summing Point.Summing Point.Summing Point. Figure 4-4 shows a circle with a cross, the 

symbol that stands for a summing operation. The ( )+  or ( )−  sign at each 

arrowhead indicates whether the associated signal is to be added or 

subtracted. It is important that the quantities being added or subtracted 
have the same dimensions and the same units. 

 

a

b

a b−

 
Figure 4-4  Summing point. 
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Branch PoiBranch PoiBranch PoiBranch Point.nt.nt.nt. A branch point is a point from which the 

signal from a block goes concurrently to other blocks or summing points. 
 

Block Diagram of a closedBlock Diagram of a closedBlock Diagram of a closedBlock Diagram of a closed----loop systemloop systemloop systemloop system. Figure 4-5 is 

a BD of closed loop system. The output ( )C s  is fed back to the summing 

point, where it is compared to the input ( )R s . The closed loop nature of the 

system is indicated clearly by the figure. The output ( )C s  is obtained  by 

multiplying the TF ( )G s  by the input of the block, ( )E s . 

( )C s( )R s ( )G s
( )E s

 
Figure 4-5  Block Diagram of a closed loop system. 

 
 

Any linear system can be represented by a BD consisting of blocks, summing 
points, and branch points. When the output is fed back to the summing point 

for comparison with the input, it is necessary to convert the form of the 
output signal to that of the input signal. This conversion is accomplished by 

the feedback element whose transfer function is ( )H s , as shown in Figure 4-

6. Another important role of the feedback element is to modify the output 
before it is compared with the input. In the figure, the feedback signal that is 

fed back to the summing point for comparison with the input is 

=( ) ( ) ( )B s H s C s . 

 

( )C s( )R s ( )G s

( )H s

( )B s

( )E s

 
 

Figure 4-6  Block Diagram of a closed loop-system with feedback element. 
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Basic Rules for Reducing Block diagramsBasic Rules for Reducing Block diagramsBasic Rules for Reducing Block diagramsBasic Rules for Reducing Block diagrams        

Rule:1Rule:1Rule:1Rule:1    

 

Rule: 2 (Associative and Commutative Properties)Rule: 2 (Associative and Commutative Properties)Rule: 2 (Associative and Commutative Properties)Rule: 2 (Associative and Commutative Properties)    

 

Rule: 3 (Distributive Property)Rule: 3 (Distributive Property)Rule: 3 (Distributive Property)Rule: 3 (Distributive Property)    

 

Rule: 4 (Blocks in Parallel)Rule: 4 (Blocks in Parallel)Rule: 4 (Blocks in Parallel)Rule: 4 (Blocks in Parallel)    
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Rule: 5 (Positive Feedback Loop)Rule: 5 (Positive Feedback Loop)Rule: 5 (Positive Feedback Loop)Rule: 5 (Positive Feedback Loop)    

 

Rule: 6 (Negative Feedback loop)Rule: 6 (Negative Feedback loop)Rule: 6 (Negative Feedback loop)Rule: 6 (Negative Feedback loop)    
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MATLAB ImplementationMATLAB ImplementationMATLAB ImplementationMATLAB Implementation    

Series ConnectionSeries ConnectionSeries ConnectionSeries Connection    

 

den

num

)(

)(
)( ==

sR
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den1

num1
)(1 =sG

den2

num2
)(2 =sG
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)(2 sG)( sR )( sC)(1 sG

 
 

   Parallel ConnectionParallel ConnectionParallel ConnectionParallel Connection    
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   Feedback ConnectionFeedback ConnectionFeedback ConnectionFeedback Connection    

 

1
GR C

[num,den] = feedback(num1,den1,num2,den2,sign)

  +1     Positive Feedback

   -1     Negative Feedback (default)
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4444....3333 PartialPartialPartialPartial----Fraction Expansion with MatlabFraction Expansion with MatlabFraction Expansion with MatlabFraction Expansion with Matlab    

 

MATLAB representation of Transfer Functions MATLAB representation of Transfer Functions MATLAB representation of Transfer Functions MATLAB representation of Transfer Functions 

(TF)(TF)(TF)(TF). The transfer function of a system is represented by two arrays of 
numbers. For example, consider a system defined by  

( )

( ) 2

25

4 25

Y s

U s s s
=

+ +
 

 
This system is represented as two arrays, each containing the coefficients of 
the polynomials in descending powers of s as follows 

 
>> num=25; 

>> den=[1    4    25]; 
>> sys=tf(num,den) 

 
MATLAB will automatically respond with the display 

 

Transfer function: 
      25 
-------------- 
s^2 + 4 s + 25 
 

PartialPartialPartialPartial----Fraction Expansion with MATLABFraction Expansion with MATLABFraction Expansion with MATLABFraction Expansion with MATLAB....    MATLAB 
allows us to obtain the partial-fraction expansion of the ratio of two 
polynomials, 

 

( )

( )

( ) ( ) ( )

( ) ( ) ( )

1

1

1 2

1 2

num

den

h h

n n

b s b s bB s

A s s s a

h

a a n

−

−

+ + +
=

+ + +
=

�

�
 

Where ( )1 0a ≠ , some of ( )a i  and ( )b j  may be zero, and num and den are 

row vectors that specify the numerator and denominator of ( ) ( )B s A s . That 

is, 

 
>> num=[b(1)    b(2)    ….    b(h)]; 

>> den =[a(1)    a(2)    ….    a(h)]; 
 

The command 

 
>> [r,pk]=residue(num,den); 

 
finds the residues, poles and direct terms of a partial fraction expansion of 

the ratio of the two polynomials ( )B s  and ( )A s . The partial fraction 

expansion of ( ) ( )B s A s  is given by 
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( )

( )

1 2

1 2

( ) ( ) ( )
( )

( ) ( ) ( )

B s r r r n
k s

A s s p s p s p n
= + + + +

− − −
�  

 

As an example, consider the function 
 

( )

( )

4 3

3

2

2

8 16 6

6 6

9

11

num

den

B s s s s

A s s s

s

s

+ + +
=

+ +

+
=

+
 

 
>> num=[1    8    16    9    6]; 

>> den=[1    6    11    6]; 
>> [r,p,k]=residue(num,den) 

 

gives the residues r , poles p  and direct terms k  as follows 

 
r=-6.0000 

   -4.0000 
    3.0000 

 
p=-3.0000 
    -2.0000 

    -1.0000 
 

k= 1 2 
 

Therefore , the partial-fraction expansion of ( ) ( )B s A s  is: 

 

( )

( )

4 3

3

2

2

8 16 6

6 6

9
2

11

num 6 4 3

den s+3 s+2 s+1

B s s s s

A s s s

s
s

s

+ + +
=

+ +

+
= = + − − +

+
 

 
The command  

 
[num,den]=residue(r,p,k) 
 

where r,p and k are outputs , converts the partial-fraction expansion back to 

the polynomial ratio ( ) ( )B s A s  as shown below 

 

>> r =[-6    -4    3]; 
>> p =[-3    -2    -1]; 
>> k=[1    2]; 

>> [num,den]=residue(r,p,k) 
 

num = 
 

     1     8     16     9     6 
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den = 
 

     1     6     11     6 

 
 

Example 4-3 (Textbook Page 114-115) 

 
Consider the spring-mass-dashpot system mounted on a massless cart as 

shown in Figure 4-7.  
 

1. Obtain the mathematical model of the system. 

2. If 10 kgm = , 20 N-s/mb =  and 100 N/mk = . Find the response ( )y t  

for a unit step input. 
 

m

y

u

k

b

( )−� �b y u

( )−k y u
m

y

 
 

Figure 4-7 Spring-mass-dashpot system mounted on a cart and its FBD. 

 

 
1. Apply Newton’s second law for a system in translation 

 

�
( ) ( )

Summation of all forces 
acting on the system

my mF b y u k y u y= ⇒ − − − =−∑ � ��� ��  

or 

my by k y bu ku+ + = +�� � �  

 

The latter equation represents the mathematical model of the system under 
consideration.  

 
2. For zero I. C’s, taking LT of both sides of the above equation gives 

 

( ) ( ) ( ) ( )2ms bs k Y s bs k U s+ + = +  
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Taking the ratio of ( )Y s  to ( )U s  , we find  the TF of the system 

 

( )

( )

( )

( )2
Transfer Function (TF)

Y s bs k

U s ms bs k

+
= =

+ +
 

 

3. Next, we shall obtain analytical solution of the response to the unit-step 
input. Substituting the given numerical values for the mass, spring and 
dashpot elements gives 

 

( )

( ) 2 2

20 100 2 10

10 20 100 2 10

Y s s s

U s s s s s

+ +
= =

+ + + +
 

 

Since the input u  is a unit step function, 
 

( )
1

U s
s

=  

The output ( )Y s  becomes 

 

( )
2 3 2

1 2 10 2 10

2 10 2 10

s s
Y s

s s s s s s

+ +
= =

+ + + +
 

 

4. To obtain the inverse LT of ( )Y s , we need to express ( )Y s  into partial 

fractions. Use MATLAB for that 
 
 >> num=[2    10]; 

 >> den=[1    2    10    0]; 
>> [r,p,k]=residue(num,den) 

 
 r = 
   -0.5000 - 0.1667i 
   -0.5000 + 0.1667i 
    1.0000           
 
 p = 
   -1.0000 + 3.0000i 
   -1.0000 - 3.0000i 
         0           
 
 k = 
 
      [] 
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 Therefore, ( )Y s  becomes 

 

( )
0 5 0 1667 0 5 0 1667 1

1 3 1 3

. . . .j j
Y s

s j s j s

− − − +
= + +

+ − + +
 

 

Since ( )Y s  involves complex-conjugate poles, it is convenient to combine 

two complex conjugate terms into one as follows 

 

( )
2 2

0 5 0 1667 0 5 0 1667

1 3 1 3 1 3

. . . .j j s

s j s j s

− − − + −
+ =

+ − + + + +
 

Then ( )Y s  can be expanded as 

 

( )
( ) ( )

( ) ( )

2 22 2

2 22 2

1 11 1

1 3 1 3

1 1 1

1 3 1 3

3

3

s s
Y s

s ss s

s

s s s

= − = −
+ + + +

+
= − +

+ + + +

+ −

 

 

5. The inverse LT of ( )Y s  is obtained as 

 

( )
1

1 3 3
3

− −= = − +  ( ) cos sin-1 t ty t Y s e t e tL . 

 
Example 4-4 (Textbook Page 117-119) 

 
Consider the mechanical system shown in Figure 4-8. The system is initially 

at rest. The displacements x  and y  are measured from their respective 

equilibrium positions. Assuming that ( )p t  is a step input and the 

displacement ( )x t  is the output. 

 
1. Obtain the transfer function of the system. 

2. If 0 1= . kgm , 2 0 4= . N-s/mb  and 1 6= N/mk , 2 4= N/mk , and ( )p t  is a 

step force of magnitude 10 N ,  obtain an analytical solution of ( )x t . 
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2b

2k
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m

( )p t
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x

2m

2
�b y

( )2
−k y x

m

( )p t

1k x

y

x

 
Figure 4-8 Mechanical system and its FBD. 

 

 
1. Put a fictitious mass 2m . 

2. Draw the FBD as shown. 

3. Apply Newton second for translational motion for mass m  

 

�
( ) ( )1 2

Summation of all forces 
acting on the mass m

F p t k x km y mxxx − += ⇒ =−∑ �� ��  

 

or 

    ( )1 2 2+ + − =�� ( )mx k k x k y p t    (1) 

 
4. Apply Newton second for translational motion for mass 2m  

 

�
( )

2

2 2 2 0

Summation of all forces 
acting on the mass m

m yF b y k y x− − −= ⇒ =∑ � ��  

or 

   ( )2 2 2 0k x b y k y− + + =�     (2) 

 
5. For zero I. C’s taking LT of both sides of Eqs. (1) and (2), gives 
 

  ( ) ( ) ( )2

1 2 2
 + + − =  ( )X s Ym k ss k k P s    (3) 

   ( ) [ ] ( )2 2 2 0k b sX s Yk s− + + =     (4) 
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Equations (3) and (4) constitute a system of 2 equations with 2 unknowns 

( )X s  and ( )Y s .1 

 

6. Solving Eq. (3) for ( )Y s  gives 

   ( )
[ ]

( )2

2 2

k

b s
Y X s

k
s =

+
     (5) 

 
7. Substitute Eq. (5) into Eq. (3) we get 

( ) ( )
[ ]

( )
2

2 2
1 2

2 2

( )
k

ms k k P s
b s

X s X s
k

 + + − =  +
 

or 

( )

( ) ( )
2 2

3 2

2 2 1 2 2 1 2

+

+ + + +
= =Transfer Function (TF)

b s k

mb s mk s k k bs sP k

s

k

X
 

 
which represents a third order system. 

 

8. Next, we shall obtain analytical solution of the response to a step 

input of magnitude10 N . Substituting the given numerical values for the 

mass, springs and dashpot elements gives 

 

( )

( ) 3 2

3 2

0 4 4

0 04 0 4 4 24

10 100

10 100 600

+

+ + +

+

+
=

+

=

+

.

. .

s

s s s

s

s s s

X s

P s
 

 

Since the input p  is a step function of magnitude 10 N , then 

 

( )
10

=U s
s
 

The output ( )X s  becomes 

 

( )

( ) 3 2

10 100 10

10 100 600

+
×

+ + +
=

s

s s s

X s

P s s
 

 

                                                 
1
 See Appendix at the end of this chapter 



ME 413 Systems Dynamics & Control   Chapter Four: Transfer Function Approach  

 

 

17/28 
 

9. To obtain the inverse LT of ( )X s , we need to express ( )X s  into partial 

fractions. Use MATLAB for that 
 

>> num=[100    1000]; 
>> den=[1    10    100    600     0]; 

>> [r,p,k]=residue(num,den) 
 

r = 

 
  -0.6845 + 0.2233i 

  -0.6845 - 0.2233i 
  -0.2977           
   1.6667           

 
p = 

 
  -1.2898 + 8.8991i 
  -1.2898 - 8.8991i 

  -7.4204           
        0           

 
k = 

 
     [] 
 

 Therefore, ( )X s  becomes 

 

( )

( )

( )
2 2

0 6845 0 2233 0 6845 0 2233 0 2977 1 6667

1 2898 8 8991 1 2898 8 8991 7 4204

1 3690 1 2898 3 9743 0 2977 1 6667

7 42041 2898 8 8991

− + − −
= + − +

+ − + + +

 − + −
= − + 

++ +  

. . . . . .

. . . . .

. . . . .

.. .

j j
X s

s j s j s s

s

s ss

 

 

10. The inverse LT of ( )X s  is obtained as 

 

( ) ( )

( )

1 2898

1 2898 7 4204

0 4466

1 3690 8 8991

3 9743
8 8991 0 2977 1 6667

8 8991

.

. .

.

( ) . cos .

.
sin . . .

.

-1 t

t t

x t X s e t

e t e

−

− −

=

= = −  

− − +
���

L

. 
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From the preceding examples, we have seen that once the TF 

( ) ( ) ( )=X s U s G s  of a system is obtained, the response of the system to 

any input can be determined by taking the inverse LT of ( )X s , or  

 

( ) ( )= =      ( ) ( )-1 -1x t X s G s U sL L  

 

Finding the inverse LT of ( )G s  may be time consuming if the TF ( )G s  of 

the system is complicated, eventhough the input ( )U s  may be a simple 

function of time. Unless, for some reason, the analytical solution is needed, 

we should use a computer to get a numerical solution. 
 
 

4444....4444 Transient Response AnalysisTransient Response AnalysisTransient Response AnalysisTransient Response Analysis with Matlab with Matlab with Matlab with Matlab    

 

MATLAB Representation of TransferMATLAB Representation of TransferMATLAB Representation of TransferMATLAB Representation of Transfer----Functions Functions Functions Functions 

(TF) Systems(TF) Systems(TF) Systems(TF) Systems. 

 
Figure 4-1 shows a block with a TF. Such a block represents a system or an 
element of a system. To simplify our presentation, we shall call the block 

with a TF a system. MATLAB uses sys to represent such a system. The 
statement 

 
>> sys=tf(num,den) 
 

represents the system. For example, consider the system 
 

( )

( ) 2

2 25

4 25

+
=

+ +

Y s s

X s s s
 

 

This system is represented as two arrays, each containing the coefficients of 
the polynomials in descending powers of s as follows 
 

>> num=[2    25]; 
>> den=[1    4    25]; 

>> sys=tf(num,den) 
 

MATLAB will automatically respond with the display 
 

Transfer function: 

   2 s + 25 
-------------- 

s^2 + 4 s + 25 
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Step Response. The step function plots the unit step response, 
assuming the I.C’s are zero. The basic syntax is step(sys), where sys is the 

LTI object defined previously. 
 

 The basic syntax commands are summarized below 
 

Command (Basic 

Syntax) 

Use 

>> step(sys) 

 

generates a plot of a unit step response and 

displays a response curve on the screen. The 

computation time interval ∆t  and the time span 
of the response tf  are determined automatically 
by MATLAB. 
 

>> step(sys,tf) 
 

generates a plot of a unit step response and 
displays a response curve on the screen for the 

specified final time tf . The computation time 
interval ∆t  is determined automatically by 
MATLAB.  
 

>> step(sys,t) 
 

generates a plot of a unit step response and 
displays a response curve on the screen for the 

user specified time t  where t = 0 : ∆t : tf . 
 

>> [y,t]=step(sys,…) 

 

Returns the output y, and the time array t used 

for the simulation. No plot is drawn. The array y 

is p q m× ×  where p  is length(t), q  is the number 

of outputs, and m  is the number of inputs. 

 

>> step(sys1, sys2,…,t) 
 

Plots the step response of multiple LTI systems 

on a single plot. The time vector t  is optional. 
You can specify line color, line style and marker 

for each system. 
 

 
The steady state response and the time to reach that steady state are 

automatically determined. The steady state response is indicated by 
horizontal dotted line. 

 
For more details in this topic: type doc step or help step at MATLAB prompt 
>> 

 
Example 4-5 (Textbook Page 121-122) 

 
Consider again the spring-mass-dashpot system mounted on a cart as 
shown in Figure 4-7. (See Example 4-3). The transfer function of the 

system is 
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( )

( )

( )

( )2
Transfer Function (TF)

Y s bs k

U s ms bs k

+
= =

+ +
 

For 10 kgm = , 20 N-s/mb =  and 100 N/mk = . Find the response ( )y t  

for a unit step input 1( ) ( )u t t= . 

 
MATLAB PROGRAM: 

 
>> m=10; b=20; k=100; 

>> num=[b    k]; 
>> den=[m    b    k]; 
>> sys=tf(num,den); 

>> step(sys) 
>> grid 

0 1 2 3 4 5 6
0

0.5

1

1.5
Step Response

Time (sec)

A
m

p
lit

u
d
e

 
Figure 4-10  Unit step response curve 

 
 

Example 4-6 (Textbook Page 123-124) 
 

Consider again the mechanical system shown in Figure 4-8. (See 
Example 4-4). The transfer functions of the system are (See Appendix) 

 

( )

( ) ( )
2 2

3 2

2 2 1 2 2 1 2

b s k

mb s mk

X s

P s k k b s k ks
=

+

+ + + +
 

  and 

 

( )

( ) ( )
2

3 2

2 2 1 2 2 1 2

k

mb s mk s k k b s k

Y s

P s k
=

+ + + +
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For 0 10. kgm = , 2 0 4. N-s/mb =  and 1 6 N/mk = , 2 4 N/mk =  and ( )p t  is 

a step input of magnitude 10 N . Obtain the responses ( )x t  and ( )y t . 

 
MATLAB PROGRAM: 

 

>> m=0.1; b2=0.4; k1=6;k2=4; 
>> num1=[b2    k2] 

>> num2=[k2] 
>> den=[m*b2    m*k2    k1*b2+k2*b2    k1*k2] 
>> sys1=tf(num1,den) 

>> sys2=tf(num2,den) 
>> step(10*sys1,'r:',10*sys2,'b') 

>> grid 
>> gtext('x(t)');gtext('y(t)') 
 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1
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2.5
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x(t)

y(t)

Step Response

Time (sec)

A
m

p
lit

u
d

e

 
 

Figure 4-11 Step response curves ( )x t  and ( )y t  

Impulse Response. The impluse function plots the unit-impulse 

response, assuming the I.C’s are zero. The basic syntax is impulse(sys), 
where sys is the LTI object. 

 
 The basic syntax commands are summarized below 
 

Command (Basic Syntax) Use 

>> impulse(sys) generates a plot of a unit impulse response 
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 and displays a response curve on the screen. 

The computation time interval ∆t  and the 
time span of the response tf  are determined 
automatically by MATLAB. 
 

>> impulse(sys,tf) 
 

generates a plot of a unit impulse response 
and displays a response curve on the screen 

for the specified final time tf . The 
computation time interval ∆t  is determined 
automatically by MATLAB.  
 

>> impulse(sys,t) 
 

generates a plot of a unit impulse response 
and displays a response curve on the screen 

for the user specified time t  where 
t = 0 : ∆t : tf . 
 

>> [y,t]=impulse(sys,…) 
 

Returns the output y, and the time array t 
used for the simulation. No plot is drawn. The 

array y is p q m× ×  where p  is length(t), q  is 

the number of outputs, and m  is the number 

of inputs. 
 

>>impulse(sys1, sys2,…,t) 
 

Plots the impulse response of multiple LTI 

systems on a single plot. The time vector t  is 
optional. You can specify line color, line style 

and marker for each system. 
 

 
The steady state response and the time to reach that steady state are 

automatically determined. The steady state response is indicated by 
horizontal dotted line. 

 

For more details in this topic: type doc impulse or help impulse at MATLAB 
prompt >> 

 
 

Impulse Input. The impulse response of a mechanical system can 

be observed when the system is subjected to a very large force for a very 
short time, for instance, when the mass of a spring-mass-dashpot system is 

hit by a hammer or a bullet. Mathematically, such an impulse input can be 
expressed by an impulse function. 

The impulse function is a mathematical function without any actual 

physical counterpart. However, as shown in Figure 4-12 (a), if the actual 

input lasts for a short time t∆  but has a magnitude h , so that the area 
h t∆ in a time plot is not negligible, it can be approximated by an impulse 

function. The impulse input is usually denoted by a vertical arrow, as shown 
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in Figure 4-12 (b), to indicate that it has a very short duration and a very 
large height. 

h

t∆

t

x

0
t

x

0

 
 

Figure 4-12 Impulse inputs 
 

 

Example 4-7  
 

Consider the previous Example 4-6 but with an impulse input of magnitude 
10 N. 

 

MATLAB PROGRAM: 
 

>> m=0.1; b2=0.4; k1=6;k2=4; 
>> num1=[b2    k2] 

>> num2=[k2] 
>> den=[m*b2    m*k2    k1*b2+k2*b2    k1*k2] 
>> sys1=tf(num1,den) 

>> sys2=tf(num2,den) 
>> impulse(10*sys1,'r:',10*sys2,'b') 

>> grid 
>> gtext('x(t)');gtext('y(t)') 
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Figure 4-13 Impulse response curves ( )x t  and ( )y t  

Obtaining response to arbitrary input. The lsim function plots 

the response of the system to an arbitrary input. The basic syntax commands 
is summarized below 

 

Command (Basic 
Syntax) 

Use 

>> lsim(sys,u,t) 
 

produces a plot of the time response of the LTI 
model sys to the input time history t,u. The 

vector t specifies the time samples for the 
simulation and consists of regularly spaced time 

samples. t = 0 : ∆t : tf  

The matrix u must have as many rows as time 
samples (length(t)) and as many columns as 
system inputs. Each row u(i,:) specifies the input 

value(s) at the time sample t(i).  
 

 
For more details in this topic: type doc lsim or help lsim at MATLAB prompt 

>> 
 

Example 4-8  
 

Consider the mass-spring-dashpot system mounted on a cart of 

Example 4-3 The TF of the system is  

( )

( )

( )

( )2

Y s bs k

U s ms bs k

+
=

+ +
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where ( )Y s  is the output ( )U s  is the input . Assume that 10 kgm = , 

20 N-s/mb =  and 100 N/mk = . Find the response ( )y t  for a ramp 

input with a slope of 2, ( 2( )r t t= ). 

 

MATLAB PROGRAM: 
 

>> m=10; b=20; k=100; 

>> num=[b    k];den=[m    b    k]; 
>> sys=tf(num,den); 

>> t=[0:0.001:3]; 
>> u=2*t; 
>> lsim(sys,u,t);grid;gtext('x(t)');gtext('y(t)') 

0 0.5 1 1.5 2 2.5 3
0
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3
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6

r(t)

y(t)

Linear Simulation Results
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A
m

p
lit

u
d
e

Figure 4-14 

 Response for a 

ramp  input 2( )r t t=  

Example 4-9  

 

Find the response ( )y t  of the previous Example 4-8 if the input is 

shown by the Figure below. 

t

( )r t

1

1

Figure 4-15  Arbitrary input 
 

MATLAB PROGRAM: 
 

>> m=10; b=20; k=100; 
>> num=[b    k] 

>> den=[m    b    k] 
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>> sys=tf(num,den) 
>> t=[0:0.001:5]; 

>> for k=1:length(t) 
>> if t(k) <= 1 

r(k) =t(k); 
else 
r(k)=1; 

end 
end 

>> y=lsim(sys,r,t); 
>> plot(t,y,t,r,'r:');grid; 
>> xlabel('Time (sec)'); 

>> gtext('r(t)');gtext('y(t)') 
  

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2
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Figure 4-16 Response for an arbitrary input 
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APPENDIX 
 

The transfer functions ( ) ( ) ( )1G s X s U s=  and ( ) ( ) ( )2G s Y s U s=  can be found 

directly by solving the system of Equations (3) and (4) with the unknowns 

( )X s  and ( )Y s . Rewrite Eqs (3) and (4) as 

 

( ) ( ) ( )2

1 2 2
 + + − =  ( )X s Ym k ss k k P s   

 (3) 

( ) [ ] ( )2 2 2 0k b sX s Yk s− + + =     

 (4) 
 

  Method of Substitution: 
 

The above system can be solved by substituting of one of the unknowns from 

one equation into the other. For instance, from Eq. (4) 
 

( )
[ ]

( )2

2 2

k

b s
Y X s

k
s =

+
    

 (5) 

Substitute Eq. (5) into Eq. (3) we get 

( ) ( )
[ ]

( )
2

2 2
1 2

2 2

( )
k

ms k k P s
b s

X s X s
k

 + + − =  +
 

or 

( )

( ) ( )
2 2

3 2

2 2 1 2 2 1 2

b s k

mb s mk

X s

P s k k b s k ks
=

+

+ + + +
 

 or 

( )
( )( )

( )
2 2

3 2

2 2 1 2 2 1 2

b s k

mb s mk

P s

s k k b s k
X s

k

+

+ + + +
=   

 (6) 

 Substitute ( )X s  from (6) into (5), we get 

( )
[ ]

( )
[ ]

( )( )
( )
( )

2 22 2

3 2

2 2 2 2 2 2 1 2 2 1 2

X s

b s kk k

b s k b s k mb s mk s k k b s

P s
Y s

k k
X s

 
 + 

= =  
+ + + + + + 

  
���������������

 

Finally 
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( )

( ) ( )
2

3 2

2 2 1 2 2 1 2

k

mb s mk s k k b s k

Y s

P s k
=

+ + + +
 

 
 
  Cramer’s Rule: 

 
Eqs. (3) and (4) represent a system of two equations with two unknowns 

( )X s and ( )Y s . The above system can be written in the form 

 

11 12

21 22 0

( ) ( )

( ) ( )

( )a a P sX s Y

a a Y

s

X s s

+ =

+ =
    

 (7) 

Where it is clear that 

( )

( )

2

11 1 2

12 21 2

22 2 2

a ms k k

a a k

a b s k

 = + + 

= = −

= +

 

The solution to system (7) is  

12

22 22 22

11 12 11 22 12 12 11 22 12 12

21 22

11

21 21 21

11 12 11 22 12 12 11 22 12 12

21 22

0

0

( )
( )

( )
(

( )

( )

( )

( )

( )

( )
)

a

a a a

a a a a a a a a a a

a a

a

a a a

a a a

P s

P s

P s

P s

P s

Pa a a a a a a

a a

X s
X s

X s
Y s

s

= = ⇒
− −

−−

−

=

= = ⇒ =
−

 

or 

 

( )

( ) ( )

( ) ( )

2 222

2 2

11 22 12 12 1 2 2 2

21 2

2 2

11 22 12 12 1 2 2 2

( )

( )

( )

( )

b s ka

a a a a ms k k b s k k

a k

a a

P s

a a ms k k b s k

Y

s k

X s

s

P

+

−  + + + − 

−

−  + + + − 

= =

= =

 

 

Therefore it does not appear in the equation of motion. 


