ME 413 Systems Dynamics & Control Chapter Two: Laplace transform

CHAPTER 2
LAPLACE TRANSFORM

A. BAZOUNE

2.1

2.2

INTRODUCTION

Laplace Transform is one of the most important mathematical tools available for
modeling and analyzing linear systems.

COMPLEX NUMBERS, COMPLEX VARIABLES, AND
COMPLEX FUNCTIONS

Complex Numbers Using the notationj=+/—1, one can
express all complex numbers in engineering calculations as

z=x+]y

where x is the real part and jy is the imaginary part. Notice that both x and ¥y

are real and that ] is the only imaginary quantity in the expression above.

Im
A

Fig. 2-1 Complex plane representation of a complex number 7.

The Magnitude, or absolute value, of 7z is defined as the length of the directed
segment shown in Fig. 2-1.

Magnitude of z = |z| N P yz

The angle of 7z is the angle that the directed line segment makes with the positive
real axis. A counterclockwise rotation is defined as the positive direction for
the measurement of angles.
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ME 413 Systems Dynamics & Control Chapter Two: Laplace transform
-1
angle of z = @ = tan (y/x)
A complex number can be written in rectangular form as:
z=x+]jy
A

L

rectangular form
z= |z|(c0s0+ jsin 0)

and in polar form as

Z:|Z|49
| | B polar form
z=|zle

In converting complex numbers from rectangular to polar from , we use

z=|7| =27+, 6 =tan" (lj

X

To convert complex numbers from polar to rectangular form, we employ

x:|z|cost9, y:|z|sint9

Complex Conjugate. The complex conjugate of z=x+ jy is
defined as
zZ=x-]y

The complex conjugate of Z thus has the same real part as Z and an imaginary
part that is the negative of the imaginary part of Z as shown in Fig. 2-2. Notice
that

Im
A
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Fig. 2-2 Complex number Z and its complex conjugate Z.

2/36



L

u

4

4

|

A
ME 413 Systems Dynamics & Control Chapter Two: Laplace transform
zZ=x+]y :|Z| 49:|Z|(cosﬁ+jsin0)
Z=x-jy= |z| £(-0) = |z|(c050—jsin0)
Euler’'s Theorem. The power series expansions of cosf and

L

sin @ are, respectively,

0 6 6o
cosf=1-—+——-——+--
21 4! 6!
and

_ e 6 6o
sin@=0-——+—-——+--
35t 7!
Thus

,92 .03 .04
(o) (o)  (j6)
20 31 4

cos@+jsind =1+ j0+

Since
2 3
. X X
e =l+x+—+—+---
21 31
it follows that

cos @+ jsin@ = e

Using the above relation, one can express the sine and cosine in complex form.
. —-jé . . i6
Noting that € 7" is the complex conjugate of e’” and that
e’ =cos@+ jsin@
e’ =cos@—jsin@
By adding the above expressions together, we find that

o -jo

e +e

cosf =——
2

while by subtracting the second expression above from the first one, we obtain

sin @ =
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Complex Algebra.

Equality of complex numbers. Two complex numbers z, and 2,
are said to be equal if and only if their real parts are equal and their imaginary parts

are equal. So if two complex numbers are written

Z =X+ Y, and  Z, =X, +JY,

Then z, =z, ifand only if X, =X, and Y, =1/,.

Addition. Two complex numbers Z, and Z, in rectangular form can be
added by adding the real parts and the imaginary parts separately:

zZ+2z, :(x1+jy1)+(x2+jy2):(x1+x2)+j(y1+y2)

Subtraction. Subtracting one complex number from another can be
considered as adding the negative of the former:

Z— %, :(x1+jy1)_(x2+jy2):(x1_x2)+j(y1_y2)

Multiplication. If a complex number is multiplied by a real number, the
result is a complex number whose real and imaginary parts are multiplied by that
real number:

az=a(x+jy)=ax+ jay, (a= real number)

If two complex numbers appear in rectangular form and we want the product in

rectangular form, multiplication is accomplished by using the fact that j2 =—-1. Thus,
if two complex numbers are written

21:x1+jy1’ 22=X2+jy2
Then
22, = (xl +jy1)(x2 +j]/2) = X%, + jx,y, + jy, X, +j2y1y2
= (x1x2 —y1y2)+]'(x1y2 +y1x2)

In polar form, multiplication of two complex numbers can be done easily. The
magnitude of the product is the product of the two magnitudes, and the angle of the
product is the sum of the two angles. So if two complex numbers are written
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z,=|2]£86,, z, =|z,| £6,
then
2,2, :|Zl||zz| 4(01 +02)

Multiplication by j. It is important to note that multiplication by ] is

equivalent to a counterclockwise rotation by 90°. For example, if

z=x+]y
then

jz=j(x+jy )=jx+jy=-y+jx
or, noting that j =190, if

z=z| 26
then
jz=[11 £90|2| £6 =|z| £(6+90)

Fig. 2-3 illustrates the multiplication of a complex number Z by ]

Im
A

90 |

Fig. 2-3 Multiplication of a complex number Z by ]

Division. If a complex number Z =|ZI|ZI91 is divided by another

complex number Z, = |Zz| Z£6, ,then

220, |z
BN

2o 2(6,-9,)
ZZ

N
ME 413 Systems Dynamics & Control Chapter Two: Laplace transform
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Chapter Two: Laplace transform

That is, the result consists of the quotient of the magnitudes and the difference of
the angles. Division in rectangular form can be done by multiplying the denominator
and numerator by the complex conjugate of the denominator. For instance,

2 (o+jy)  Gorgy)(x - jy,)

z, (x,+j5y,) (x,+jy,) (x,—-jy,)
%/—J

complex Conjugate of z,

— (xlxz +y1y2)+j(x2yl _xlyz)

(< +v))
by L Goymxy)
(2 +v2) (¥ +42)

Division by j. Division by ] is equivalent to a clockwise rotation by

90°. For example, if

z=x+]y
then
z_(x+jy) (e+jy)j By
j ] i -1
or,
£=|Z|i=|z|4(0—90°)
i 1290

Fig. 2-4 illustrates the division of a complex number Z by ]

Im
A

90¢

\]
=
w

OINY

7lj

Fig. 2-4 Division of a complex number Z by ]
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ME 413 Systems Dynamics & Control Chapter Two: Laplace transform

Powers and roots. Multiplying Z by 71 times, we obtain
2" =(|z| 26)" =|7|" 2n6

Extracting the 71 th root of a complex number is equivalent to raising the number to

1 /nth power.
/n ZQ

2" = (| 26)"" |z
n

For instance, calculate (8.66—]5)3 =7?

Remember :

The real part = x =8.66
The imaginary part =y =5

The magnitude = |z| = \/xz +y = \/8.662 +5 =10

| L 5 :
The angle= 6 = tan (1) = tan (—) =-30
X 8.66
Therefore,

(8.66—j5)" = (10 £=30") =1000£ 90" = 0— j1000 = —1000.

Remarks. 1t is important to note that
|z20] = |2]|ew]

|z + w| #|z|+|w]

Complex Variable. A complex variable has a real part and an
imaginary part, both of which are constant. If the real part or the imaginary part (or
both) are variables, the complex number is called a complex variable. In the
Laplace transformation, we use the notation S to denote a complex variable; that is,

S=0+]w
where O is the real part and ]a) is the imaginary part. (Notice that both O and

@) are real.)

Complex Function. A complex function P(S), a function of S
has a real part and an imaginary part, or

7/36



L

u

b

4

ME 413 Systems Dynamics & Control Chapter Two: Laplace transform

F(s)=F, +jF,
where F_ and Fy are real quantities.

Magnitude of F(s)= |F(S)| =, /sz +Fy2

Angle of P(S) =@ =tan" (Fy/Px)

The angle is measured counterclockwise from the positive real axis. The complex

conjugate of F(s) is f(s) =F, —ij.

Complex functions commonly encountered in linear systems analysis are single-
valued functions of S and are uniquely determined for a given value of S. Typically,
such functions have the form

K(s+z)(s+z,)(s+z,)
(s+p)(s+p)(s+p,)

F(s)=
e Points at which F(S) =0 are called zeros. That is,
s=-z,S=-2, ,--+,S=—z  are zeros of F(s).

e Points at which F(S) = oo are called poles. That is,
S=—-p,,S=—Py, "+, S=—p, are poles of F(S).

k
e If the denominator of F(S) involves k — multiple factors (S + p) , then
S = —p is called a multiple pole of order k or repeated pole of

multiplicity k.1t k=1 , the pole is called a simple pole.

[ | EXAMPLE

K(s+2)(s+10)

s(s+1)(s+5)(s+15)2

G(s) =

e Zeros of G(S) are values of S which make G(S) =0, that is
s=-2,s=-10

e Poles of G(S) are values of S which make G(S) =00, that is
s =-0,s=-1,s =-5 = simple and distinct poles
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ME 413 Systems Dynamics & Control Chapter Two: Laplace transform
s = —15,s = —-15 =double pole or (pole of multiplicity 2)

b

Since for large values of S (when S — o)
k
G(s) =s_3

G(S) possesses a triple zero at (S =o00,00, 00) ( pole of multiplicity 3). If points at
infinity are included, G(S) has the same number of poles as zeros.

To summarize: G(s) has five zeros, (S =-2,—10, 00, 0, 00)

and five poles, (S =0,-1,-5,-15, —15)
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2.3 LAPLACE TRANSFORMATION

Chapter Two: Laplace transform

What is the Laplace Transform?

It is a solution technique that transforms differential equations in the time domain

into algebraic equations in the s-domain.

Why use Laplace Transform?

The Laplace transform is a powerful tool formulated to solve a wide variety of
Initial-Value Problems (IVP). The strategy is to transform the difficult differential
equations into simple algebraic problems where solutions can be easily obtained. One
then applies the Inverse Laplace transform to retrieve the solutions of the original

problems. This can be illustrated as follows:

Time
Domain

S- Domain

System described in £°

>

time domain by
differential equation Laplace
Transform

Solution of
differential
equation

Difficult

V

Solution expressed in

o

System described in
s- domain by algebraic
equation

Solution of
Easy algebraic
equation

time domain
Inverse

Laplace
Transform

Solution expressed in
s- domain

Definition

The Laplace Transform F(s)of f(t)is defined as
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where f(t)= a time function such that f(t)=0 for r <0
s = a complex variable
F(s)= Laplace transform of f(¢)

Chapter Two: Laplace transform

Exponential Function: Consider the exponential function shown
in Fig. 2-5:
) for t <0 f(t)
)=
Ae™ fort >0 A
e
<

where A and & are constants. The Laplace i

transform of f(¢r) can be obtained as follows >t

Fig. 2-5. Exponential function

F(s)= .,f’[Ae_“’] = IAe“”e—”dt = AIe_(ms)tdt = - fa

Step Function: Consider a step function as shown in Fig. 2-6:

()= 0 fort <0 fif)
A fortr >0

A
where A is a constant. Notice that this is a

special case of the exponential function Ae™™ A
where & =0. The step function is undefined at
t =0. Its Laplace Transform is given by:

A

> !
Fig. 2-6. Step function

Fs)=£[f (1)]=£[A]=[aedr =2

S

The step function whose height is unity is called a unit-step function. The unit step
function that occurs at time 7 =1, is frequently written as l(t—to). The previous

step function whose height is A can be written as Al(t). The Laplace Transform of
the unit-step function that is defined by

11/36
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Chapter Two: Laplace transform

0 forr <0
1(t) =
1 fortr >0

.
F(s)—f[l(t)]—_([le dr =

Physically, a step function occurring at time 7 =7, corresponds to a constant signal

suddenly applied to the system at time 7 equals 7.

Ramp Function: Consider a ramp function as shown in Fig. 2-7

£0) 0 for t <0 S f)=At
At forr>0
where A is a constant. The Laplace Transform slope =tanar = A
of the ramp function is: o

o >
F(s)= f[At] =A Ite ~dt Fig. 2-7. Ramp function
0

To evaluate the above integral we use the formula for the integration by parts

oo oo

Judv=uvlg° —'[vdu
0 0
where in this case

u=At = du=A

s 1 _
dv =e'dt = v=—-e
s

st

Substituting these expressions into equation the above integral leads to the
following expression:

Ate |M+J‘Ae dr

F(s) =,£’[At]=jAte‘”dt ==
0

:(0—0)+—(_Ae_st ) g (A)

2 0 2 2
S
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Sinusoidal Function: The Laplace Transform of the sinusoidal function

o 0 for <0
)=
/ Asin(@t) for1>0
A sin(ot + (1))
Amplitude A
Phase (b—»V]\ /\ /\

(=}
N
S

\
)
Time

Fig. 2-8. Sinusoidal function

where A and @ are constants, is obtained as follows. Noting that

—jot

e/’ =coswt+ jsinwt and e’ =coswt— jsinwt

sin@t and COS @t can be written as

sinwt = L.(ej”” - e_ja”) and cos@t= %(ej”” + e_j””)

2j
Hence
"f[ASinwt]ZA.J.(ejm—e_jwt)e_“dt:i 1. _A. 1.
2j% 2js—jo 2js+ jw
i(s+ja)—s+ja)]_i( 2jw ]_ Aw
2j S+ @ 2j\s’+a@’) s+’
Similarly
f[ACOSd)t]=éI( sz_i_e—sz)e—szdt:é 1. +é 1
246 2s5s—jw 25+ jo

_é(s+jw+s—ja)j_é( 2s ]_ As
2 s+’ 2\’ +0* ) s+’
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Chapter Two: Laplace transform

Remark: The Laplace Transform of any Laplace transformable function
f(t) can be obtained by multiplying f(t) by e~ and then integrating the product
from O to oo. Once we now the method of obtaining the Laplace Transform,
however, it is not necessary to derive the Laplace transform of f(t) each time.

Laplace Transform Tables can conveniently be used to find the transform of a given
function f(t) Refer to Table 2.1 of the Textbook. Notice that the Laplace

Transforms provided in Tables in general are valid for 0 <7 <oo .

Translated Functions: Let us obtain the Laplace transform of the
translated function f (f —&)1(f — &) where &> 0. This function is zero for < .

JO1(@) f-—olt-a)

> | > |
0 0 o

Fig. 2-9 Function f(t)l(t) and translated function f(t - a)l(t - 0()

By definition, the Laplace transform of f(t — Ot)l(t — 0{) is

oo

Llf (t-a)i(t—a)]=[f (t-@)i(t - ) "dt

0
Let T=7f— &, then

=0 = 7=—x , t—> = 7T—>o and dr=dr
and

oo

f ft-a)l(t—a)e™dt= T (o)1 (z)e" " dr

0

Noting that f(T)l(T) =0 for 7 <0, we can change the lower limit from —¢ to O.
Thus

14/36
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Chapter Two: Laplace transform

oo oo

Tf (r)l(r)e‘s(”“)dz':jf (r)l(r)e‘s(”“)dz':'[f (r)e™"e ™ dt
=e_“s]:f (7)e"dT=e""F(s)
where

oo

F(s)=<[f ()]=]r (t)e™ar

0
and also

Llf (t-a)l(t—a)]=e“F(s) @20

Pulse Function: Consider the pulse function shown in Fig. 2-10

A f@
— for 0<r <1, A
f®)=41,
0 for r<0,1, <t A
A
where A and [, are constants. The pulse function
may be considered as a step function of height
A/tO that begins at f =0 and that is superimposed
» !
by a negative step function of height A/to 0 f

beginning at f =1; thatis , Fig. 2-10 A pulse function

A A
f(t):t—l(t)—t—l(t—to)

1@

4 A él(t) 4 1(r—1,)

\/

¢
0 f, 0 t, 0

\/

Then the Laplace Transform of f(t) is obtained as

t t to\s ) t,\s 1S

15/36
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Impulse Function: The impulse function is a special limiting case of the
pulse function. Consider the impulse function

lim é for 0 <1 <1, f@)
F)=q0 1,
0 for t < 0,1, <t 1, >0 A
Fig. 2-11 depicts the impulse function shown ~ o
in Fig. 2-10 as [, approaches 0. >

Fig. 2-11. Impulse function

Since the height of the impulse function A/ZO and the duration is f,, the area under
the impulse is equal to A. As the duration f, approaches 0, the height A/f,

approaches infinity, but the area under the impulse remains equal to A. Notice that
the magnitude of the impulse is measured by its area. Referring to the transformed
equation previously derived for the pulse function, i.e.,

£ [r01=" (1)

s

the Laplace Transform of the impulse function is shown to be

d
7A‘t” 7[A(1 - eisr” )] 75’“
f [f ([)] = lim M = lim dto — lim [A(se ):I

d A
1,0 tos 1,0 @ ( t(’s) 1,0 ( s)
dr,

Thus the Laplace Transform of the impulse function is equal to the area under the
impulse. The impulse function whose area is equal to unity is called the unit
impulse function or the Dirac delta function. The unit impulse function occurring

at 7 =1, is usually denoted by

(t-1,)=0 for t#t

S(t—t) =00 for t=t

];ﬁ(t—to)zl
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shown in Fig. 2-12 are related by successive integrations.

(1) u, (1) u, (1)
A A

Integration Integration
g—> 1.0 grat » 1.0

e < PP > ce-- >
0 : 0 ; 0 10 ¢

Time Time Time
1

£[8(1)]=1 elu, (1)]=— £[u, (t)]=s%

S
Fig. 2-12 The relationship between singularity functions.

Time Shifting of Singularity Functions

The singularity functions may be used to describe transient inputs that take place at
a time other than f =0. The discontinuity associated with each function occurs when

the function argument is zero; therefore, a step that occurs at time f; may be
written as U, (f —to) since I =1, =0 at ¢ =f,. This property may be used to
synthesize a transient function from a sum of singularity functions; for example, Fig.
2-13 shows the function u(¢) = u, (1)- 2u, (1 —t0)+ur (- 2)_”, (1=3).

1”39‘/ I
—— —

NN R Ay

Fig. 2-13 A transient function u(¢) = u, (1)- 2u, (t=1)+ u, (1-2)- u, (1-3)
synthesized from unit singularity functions

L
N
ME 413 Systems Dynamics & Control Chapter Two: Laplace transform
Relationships among Singular Functions
The ramp, step, and impulse functions represent a family of functions, which as
17/36
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Multiplication of f(7) by ¢

If f(t) is Laplace transformable, its Laplace transform being F(S), then the

Laplace transform of e * f (1) is
£ [e f (1)]=[e ™ ()e *dr = [f (1) dr =F (s +a)

[ | EXAMPLE Given Laplace transforms of

K5 [sinwi]= > fa)Z = F () and £ [cosmi]= sz—ia)z =G(s)

Find Laplace transform of e “' sin@t and e %' cos@t

B SOLUTION

L le*sinwt|=F(s+a)= @
[ } (s+a) (s+a) +a
and
Lle®coswt|=G(s+a)= Sta
[ } (s+a) (s+a) +a

Laplace Transform Theorems

Differentiation Theorem
£ |4 0]=sFe)-10)

£ | 450 |=F =5 0= O

Similarly for the nth derivative of f(t) , we obtain

n . (n-1)
L L;ltnf(t)}=s”F(s)—s”‘f(0)—s”_2f(0)—---—f (0)

18/36
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ME 413 Systems Dynamics & Control Chapter Two: Laplace transform

(n-1)

In the above, the following quantities f(()), f(()), ey f (0) represent the values
of f(t), df(t)/dt, el d”flf(t)/dt'H, respectively, evaluated at 7 =0.
| EXAMPLE Given

FEY=35{+52+7x

x(0)=2,2(0)=4

Find the Laplace transform F(s) of f(t).

[ | SOLUTION Using the Differentiation Theorem on the first two terms
leads to:

3Y[5] = 3;{; f(r)} = 3[s2x(5) - 52(0) - 2(0)]

57+ = %E—r f(r}}: 5[ (5)— x(0)]

Using the definition of the Laplace transform on the remaining term gives:

78051 = Tx ()]

From these results, the Laplace transform F(s) of the given equation can be
expressed as:

3|52 X (5) — £(0) — £(0) [+ 5[sX () - x(O) ]+ T[ X (9)]= Fis)
Rearranging this expression by factoring leads to:

[35% + 55+ 71X (5)—[35 + 5]x(0) - [3]4(0) = F(5)
Solving this expression for X(s) gives the following answer:

Fis)  [Bs+31@)+[31(4)

X(3)= — 7
335 +5+7 33 +33+7
TE ST d:m to force Eﬁnﬁfﬁfmﬁ
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Final Value Theorem (FVT)

}ig[f )] =lim [sF(s)]

EXAMPLE Given:

B 4(s+5)
- 33+ 2)(5+8)

Find the final value of x(t).

SOLUTION To solve this problem, use the Final Value Theorem (FVT)
Iim(f (t)|=lim|s F (s
t—>oo[f( )] s—>0|: ( ):|

Substituting the given expression into this equation leads to the solution:

hms_:.ué‘[ A(s+5) ]: 20 _

5
s(s+2)s+8) ) 16 4

Initial Value Theorem (IVT)

f©)=lim[s F(s)]

§—00

EXAMPLE Given:

o = 5(+3)s+4)
- (3 +2)3+6)

Find the initial value of x(t), i.e. find x(0).

SOLUTION To solve this problem, use the Initial Value Theorem (IVT):
x(0)y=1lim __ s¥(s)

Substituting the given expression into this equation leads to the solution:

20/36
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ME 413 Systems Dynamics & Control Chapter Two: Laplace transform

S(s+3)s+4) 1 _ 5
s +2)(s+6)

&5 —HED

For this example, as "s" goes to infinity, all terms involving "s" in the humerator and
denominator cancel. (Note that if there was one extra "s" term in the denominator
than there was in the numerator, this extra term would not be cancelled out and the
entire expression would go to zero.)

Integration Theorem

5 ]f (t)dt |= )
0 S

[ | EXAMPLE Given:
,f[jD Atdf]

Find Laplace transform of the given expression. (Hint: Let f(t) = At)

[ | SOLUTION To solve this problem, use the integration theorem:
t ' F(S‘}
A Fy]= A Arir] =
-

Substituting the result for F(s) obtained in the previous example leads to

the solution:
A
) A
)

& &

A Fievtl=

Use of MATLAB

| EXAMPLE Use MATLAB to find Laplace Transform of f (7)=17cos(3t)

21/36
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Chapter Two: Laplace transform

[ | MATLAB SOLUTION

>> symsts
>> f = t*cos(3*t);

Then the Laplace transform of fis given by
>> F = laplace(f)

F =1/(s"2+9)*cos(2*atan(3/s))
>> F = simplify(expand(F))

F =(s"2-9)/(s"N24+9)"2

Thus we obtain the Laplace transform

2
s°=9
F(S) -, 2
(s +9)
[ | EXAMPLE Use MATLAB to find Laplace Transform of

£ () =3t —5cos(21)
[ | MATLAB SOLUTION

>> syms ts
>> f=3*t-5*sin(2*t);

Then the Laplace transform of fis given by
>> F = laplace(f)
F=3/s72-10/(s"2+4)

>> F = simplify(expand(F))

F =-(7*%s"2-12)/s"2/(s"2+4)

Thus we obtain the Laplace transform

—7s*+12
Fs)=—=r="1
S (s +4)
2.4 INVERSE LAPLACE TRANSFORMATION
The inverse Laplace transformation refers to the process of finding the time function
f (7) from the corresponding Laplace transform F(s); i.e.,
=
ft)=2"[F@s)]
Several methods are available for finding the inverse Laplace transforms
22/36
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ME 413 Systems Dynamics & Control Chapter Two: Laplace transform

1. Use Tables of Laplace transforms
2. Use partial-fraction expansion method.

Partial-Fraction Expansion for Finding Inverse Laplace
Transforms

If F(s), the Laplace transform of f(z), is broken up into components

F(s)=F(s)+ B (s)+E(s)+ - +F ()
and if the inverse Laplace transform of F (s), F,(s), F(s), -, F (s), are readily
available then
CNFO] =" [F(s)]+ £ [F(s)]+ - +£'[F (s)]

:fl(t)+f2(t)+ e+, (t)

where f,(t), f,(¢), -+, f,(t) are the inverse Laplace transform of F,(s), F,(s),

-, F (s), respectively. F(s) frequently occurs in the form

n

F(s)=——, m=degN (s)<degD (s)

where N (s) and D (s) are polynomials in s and the degree of D (s) is not higher
than the degree of N(s). Notice that applying the partial-fraction expansion
technique in the search for the inverse Laplace transform of F(s)=N (s)/D(s)
requires that the poles of D(s) (roots of the denominator) must be known in

advance. Consider F (s) written in the factored form

N(s) _K(s+z,)(s+2,)(s+z,)
D(s) (s+p)(s+p,)-(s+p,)

where p, p,,...,p, and z,,2,,...,z, are either real or complex quantities, but for
each p, or z there will occur the complex conjugate of p, or z;, respectively. Here

the highest power of s in N (s) is assumed to be higher than that in D (s).

Notice that if the degree of the numerator is greater than (or equal to) that of the
denominator, then polynomial division must be performed so that the remainder

polynomial is of a lower degree than D (v) . For instance,
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5342 —5+2

=§+———, deg(-s+2)<deg(s’+1
st +1 st +1 J 9 )

Case 1. Distinct Real Poles

In this case, F(s) can be expanded into a sum of partial fractions

r, r

IT(S): = + 4o 4 n
D(s) (s+p) (s+p,) (s+p,)
where r, (k =1, 2,...,n) are constants. The coefficient r, is called the residue at the
pole at s =—p, . The value of r, can be found by multiplying both sides of the above

equation (s+ p,) and lettings =—p,, which gives

r;z(s+pk)
(s+p)  (s+p) (p) () |

=Pk

We see that all the expanded terms drop out with the exception of r, .Thus the

residue r, is found from
N
r, :{(s +p, )ﬂ} (2.6)
S==p,

Since

f () is obtained as
f (t):f“1 [F(s)]:rle_”" +re 4 tre ™ t>0

[ | EXAMPLE Find the inverse Laplace transform of

s+3
(s+1)(s+2)

F(s)=

[ | SOLUTION The partial fraction expansion of F(s) is

s+3 5 r,

=i 6+2) " 6+ 5+2)
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where 1, and r, are found by using Equation (2.6)

Thus

s+3 2 -1

PO GG+ e (512)

f(t)=fl[F(s)]=f‘{(sil)}+f [(_1}26—t_e—2t 20

5 +2)

Use of MATLAB: Use MATLAB to find the inverse Laplace Transform of the above
example

s+3
(s+1)(s+2)

F(s)=

>>symsts
>>F = (s+3)/((s+1)*(s+2))

Then the inverse Laplace transform of f (7) is given by

>> F = ilaplace(f)

f =2*exp(-t)-exp(-2*t)

>> pretty(f)

2 exp(-t) - exp(-2 t)

Thus we obtain the Laplace transform

f(t)=L"[F(s)]=2¢"=e 120

[ | EXAMPLE Obtain the inverse Laplace transform of

s +557+9s+7
(s+1)(s+2)

F(s)=

25/36
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[ | SOLUTION

Since the degree of the numerator is higher than that of the denominator
polynomial, we must divide the numerator by the denominator

B s+3 _ 2 —1
PO =s 2 e+ T ) T e

previous example

d(1)

dt

: d :
Notice that | &(r)|=1 and £ =5, so the inverse Laplace transform of

F(s) is given by

Case II. Complex Conjugate Poles

Consider a function F(s) that involves a quadratic factor s*+as+b in the

denominator. If this quadratic factor has a pair of complex conjugate poles, then it is
better not to factor this term in order to avoid complex numbers. For example, if

F(s) is given as

_ p(s)
Fls)= s(s2 +as+b)

where ¢>0 and >0, and s’+as+b=0 has a pair of complex conjugate poles,
then expand F(s) into the following partial-fraction expansion form:

Fs)=S1Bre
s s tas+b

[ | EXAMPLE Obtain: the inverse Laplace transform of

2s +12

F(s)=——m—
(8) s2+25+5

| SOLUTION 1: USE OF COMPLEX NUMBERS

26/36
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Notice that the poles of the denominator are
S _—bENb —dac _2%J4-4xIx5 _24+-16 TIPS
12 2a 2 2 -l
Therefore F(s) can be written as
Fs)= 22s+12 _ gs+12 o a Vi |
s7+2s+5 (s+1+j2)(s+1-j2) s+1+j2 s+1-j2
where the constants & and ,3 that can be found as before
Y M(zs +12) (2(-1-j2)+12) 10 j4_,_ .5
(s 72) (s +1-j2) C(-1-j2+1-j2)  —j4 2
s=—1-j2
 (s2=77) (25 +12) _(2(-1+2)+12) _10+j4_ ) .5
+14+j2 2 I+j2+1+j2 +j4 2
(s+14)2) (sb=72) | (F1+j2414)2) 4
Notice that ,3 is the complex conjugate of . Substitute the values of & and ,3
into the expression of F'(s)
.5 .5
Py 212 e
sP+25+5 s+1+j2 s+1-j2
and
5 + 5 —(1—-72)
f()="[F&)]=[1-j= e ™ 41+ = e
2 2
eftefl2t _] e’le Jj2t +e te]2t+J eft Jj2t
j 2t —Jj2t j2t j2t
— e e’” +e +i5e e e
2 2
j 2t —j2t Jj2t Jj2t
_26( re j_Se—f ( e ]
2 J
cos(2t) sin(Zt )
=2¢ ™" cos(2r)—5e™" sin(2r)
27/36
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[ | SOLUTION 2: COMPLETING THE SQUARE

The expression of F'(s) can be written in general as

cs+d
s*+2as+a’ + @’

F(s)=

where a and @ are positive real. It is clear that the denominator in the above
expression is a complete square, i.e., it can be written as

sz+2as+az+a)2=(s2+az)+a)2

Let’s us write the expression of F'(s) into the following form

cs+d _ cs+d _c(s+a)+d—ca

F(s)= = =

) s’ +2as+a’ + @’ (s+a)2+a)2 (s+a)2+602
_ c(s+a) N d—ca _ c(s+a) +d—ca 0]
(s+a)2+a)2 (s+a)2+a)2 (s+a)2+a)2 w (s+a)2+a)2

The inverse Laplace transform is then

1 1 (S+a) (d—caj N [
=L F =ct £
1(t) [F@)]=e (s+a)2+a)2 " w (s+a)2+a)2

—at —ca —at _
=ce COSC()t-i-( ]e S1n ax
7]
In our example we have
25 +12 25 +12 25 +12
F(s)=— - = 2
s°+25+5 s +2s+1+§52 (s+1)" +2

=(s+1)° 2

Thus we have a=1,w=2,c=2,d =12. Therefore, substitute into the expression of

f(2)
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—a d—ca) _, .
f(t)=5"[F(s)]=ce ’cosa)t+( e ' sin wt
w
- 12-2x1) , .
=2¢" cos2t+| ——— |e 'sin2¢
2

4

- U
=5

=2¢ ' cos2t +5¢ ' sin2t = e (2cos 2t + 5sin 2t )
Method 2: Use of Complex numbers

This method is a lengthy process we will see it in a separate problem in the help
session.

Case III. Multiple Poles

s*4+25+3

(s+1)3

As can be seen F'(s) has poles s=-1,—1,—1. Thus we say F(s) has a pole s=-1

Consider the following expression of F'(s)=

A

of multiplicity 3. Hence F(s) can be written in the following form

s’ +25+3 _B(s) _ b, L b b

(s+1)  A(s) (s+1) (s+1)° (s+1)

F(s)=

where b, b,, and b, are determined as follows. By multiplying both sides of the last

equation by (S +1)3, we obtain

3 B(s)
A(s)

(s+1) =b,+b,(s+1)+b(s+1)° (2.7)
Then, letting s =—1, Equation (2.7) gives
B
(s+1y By

A(s)

Also differentiation of both sides of Equation (2.7) gives

d B(s
" (s+1)3ﬁ =b, +2b,(s+1) (2.8)

If we let s =—1, in Equation (2.8), then

s=—1
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%{(s+1)3 B(s)ll =b,

By differentiating both sides of Equation (2.8) with respect to §, we obtain

d—z{(mf B(S)}zbl A =id—2{(s+l)3 B(S)}

ds A(s) 2!ds’ A(s)

Therefore

b, {(s+1 ” j/vrj“;i‘;;f = (~1) +2(=1)+3=2

S s +2s+3
b,=—1/(s+1
ol )Asll dswﬁ/?ff

—[ 5" +2s5+ 31:_1 =[2s+2]__ =[2(-1)+2]=0

_ld_2 (S 1)3B(S 1 d2 S +2S+3
bo2lds’ A(s) |~ 2tas® W
1 d 1
Eg[Zs + 2]s:—1 _a[z]s:—l =

2 N 0 N 1
(s+1) (s+1)° (s+1)

Therefore

F(s)=

and

f({t)=£"[F(s)]=t’¢e"+0+e” 120

2.5 SOLVING LINEAR, TIME INVARIANT
DIFFERENTIAL EQUATIONS

The Laplace transform method yields the complete solution (complementary solution
and particular solution) of linear, time invariant, differential equations. Classical
methods for finding the complete solution of a differential equation require the
evaluation of integration constants from the initial conditions. In the case of Laplace
transform method, however, this requirement is unnecessary because the initial
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conditions are automatically included in the Laplace transform of the differential
equation.

| EXAMPLE Initial Value Problem (IVP)

Solve: y"t+y =t, y(0)=1, y'(0)=1

| SOLUTION

By writing the Laplace transform of y(t) as .,f’[y (t )] =Y (s), we obtain

,f’[y t } sY (s)—y (0)
£[5(1)]=s¥ (s)=5 ¥ (0)= (0)

For zero initial conditions, i.e., y (O) =y (O) =(, the above transforms become
L1y (t)]=sY (s)
f[)’f (t)]zszY (s)

Step 1: Take Laplace Transform (LT) of both sides of the above equation:

$*Y () =5y (0) =y (O)+Y () =1/s"

iy ]
or
(s2+1)Y(s)=i2+s+1
S
Step 2: Solving for Y (s) gives
1 s 1
T PEN Il PEY R PN
_; R S
Lo O G v )
Therefore
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Y(s)—i— Loy s b 1, 5
2 (s*+1) (s> +1) (s2+1)_52 (s*+1)

Step 3: Solving

}’(f)=f_l[siz}+£_l (,—gl) =1+ cos(t)

ST+

The diagram below summarizes the approach

Time_ S- Domain
Domain
y'+y=t, 5 ] $2Y () =5y (0)=y () +Y (5) =1/s’
= ! = °oly" £ y Lt
(=L y(O=1 [ Lapiac ] D] I
Transform ]
Solution of Solutlon‘of
differential Easy algebljalc
equation equation
A J
-1
4 1 - s 5°
D=L | — |+ 1 s
y (@) Lz} Lszﬂ)] < Y(s)=_2+m
_ Inverse A} s+
y ()=t +cos(t) Laplace
Transform
[ | EXAMPLE Find the solution x(t) of the following Initial Value

Problem (IVP)
i+35+2x=0, x(0)=a, x(0)=b
where a and b are constants.

[ | SOLUTION

Step 1: Take LT of both sides of the given equation to obtain an algebraic equation
X(s)

By writing the Laplace transform of x(t) as f[x (t )] =X (S ) , we obtain
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,f’[x' (t)]=sX (s)—x(0)
LLE(t)]=5X (s)—sx(0)—%(0)

Take Laplace transform of both sides of the given equation

|:S2X (s)—sx(O)—x' (0):|+3|:SX (s)—x (0)]+2[X Es)]zO

) e[(r)] £[x(r)] £lx ()]

By substituting the initial conditions x(0)=a, )'C(O)=b into the last equations,
one obtains

|:S2X(S) —as —b]+3[sX (s)—a]+2[X(s)] =0
[s2+3s+2}X(s)=as+b+3a
Step 2: Solving for X (S) , We obtain

_as+b+3a K, N K,
sS4+3s+2  s+1 s+2
%/_J
=(s+1)(s+2)

X(s)

since X (is) has distinct poles, K, and K, can be found easily

KIZM(aS+b+3a)‘ _(al-0+b+3a)|
(51 (s +2)

S as+b+3a
o s+ (as+ b 30)

=

T (347 (s+1) (—2+1)
s=—2
Thus
X(s)= 2a+b_a+b
s+1  s+2

Step 3: Take £ [X (S )]to obtain the time domain solution x (t)
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©(1)=[x (S)]=f1[2a+b}_fl[a+b}

s +1 s+2
=(2a +b)e" —(a +b)e‘2’ t>0

[ | EXAMPLE Find the solution x(7) of the following Initial Value
Problem (IVP)

i+25+5x=f(@), x(0)=0, x(0)=0 ) ro)
where f(t) is a function given by its graph.

[ SOLUTION

\

Step 1: Find the explicit expression of f(¥)

The function f(z) given on the RHS of the IVP is a step function u(f) with height
equals to 3. and .,f’[u (t)] =.,f’[3] =3/S

Step 2: Take LT of both sides of the given equation to obtain an algebraic equation

X (s)

Remember that we have zero initial conditions. For zero initial conditions, i.e.,
x(O) = x(()) =0, the above transforms become

LlE(t)]=sX (s)
LLE(t)]=5°X (s)

Take Laplace transform of both sides of the given equation

sZX(s)+2sX(s)+5X(s)=E
s
Solving for X (s) , We obtain
3 K, cs+d

X = :_+—
(S) s(s2+2s+5) s sT+25+5

where K|, K, and K, are found as follows
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b

3=K1(s2+2s+5)+(cs+d)s

3=(K,+c)s’ +(2K,+d)s+5K,

By comparing coefficients of the SZ, § and so, terms on both sides of this last
equation respectively, we obtain

s’ terms: 5K, =3 = K,=3/5
s' terms: 2K, +d=0 = d=-2K,=-2(3/5)=-6/5

s’ terms: K, +c=0 = c¢=-K,=-3/5

_ 3 _(3/5) (-3/5)s+(-6/5) (3/5) (-3/5)s+(-6/5)
Xs)= (s2+25+5) *125+5 Y
s(s”+2s+ s s*+2s+ s (s+1)" +2

=s2425+1+4

(3/5)

2= [x ()] B2

. (—3/5)s +(—6/5)
sT+2s +5

=52 425 +1+4

S

(=3/5)s +(-6/5)
(s +1)2 +2?

G (s)

-

The second term of the last equation can be written according to the completing the
square rule. Thus we have a=1,w=2,c=-3/5,d =-6/5. Therefore substitute into

the expression of f (1)
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e 'sin2t =—=¢ ' cos2t ——e ' sin2t

A |
-1 at d—-ca) _, .
G(t)=£"[G(s)]=ce™ cosax +( je sin ar
w
()
=—§e_’ cos2t + S\ 5) 3 3
5 2 5 10
Hence
] G5 Ll (=315)s +(=6/5)
t)=£7X = G5 +£7
x() [ (S)] { S } sT+25 +5
%K_J
=s2+2s+1+4
=§—ée'tcos2t—ie"sin2t
5 5 10
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CHAPTER 2

SOME INPUT EXAMPLES

A. Bazoune

1. EXAMPLES OF INITIAL CONDITIONS

Capacitor

(b)

{c)

J

(@)

{e)

Windup toy

(f)

Figure 3.1.1-1 Some examples of initial conditions. (a) Initial charge. (b) Initial
displacement. (c) Initial pressure. (d) Initial velocity. (e) Initial temperature. (f) Initial

angular displacement.
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2. EXAMPLES OF IMPULSE INPUTS

(a)

(b)

B
Thermal
layer

Temperature Ty

{e)

Pneumatic
nut remover

{f)

Figure 3.1.2-1

Some examples of impulse inputs. (a) Electronic flash gun. (b) Impulse

force. (c) Impulse pressure. (d) Translatory impulse displacement. (e) Thermal shock.

(f) Impulse torque.
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3. EXAMPLES OF STEP INPUTS

Moment =Mg L
/
/
/ S

&0) oW

X
)
ra

Force=Mg v

Power brakes

(e) ()

Figure 3.1.3-1 Some examples of step inputs. (a) Closing a switch. (b) Step force and
step moment. (c) Quenching hot steel. (d) Translatory step displacement. (¢) Step
pressure. (f) Rotary step displacement.
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4. EXAMPLES OF RAMP INPUTS

Slowly turning

volume control
knob

(b)

(c)

(d)
Constant
speed
motor
(\\"6 = wt
(e) (f)
Figure 3.1.4-1

Some examples of ramp inputs. (a) Ramp voltage. (b) Ramp force.
(c) Ramp pressure. (d) Translatory ramp displacement. (¢) Constant temperature rise.
(f) Rotary ramp displacement.
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