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2222....1111 INTRODUCTION INTRODUCTION INTRODUCTION INTRODUCTION     

Laplace Transform is one of the most important mathematical tools available for 

modeling and analyzing linear systems. 

2222....2222 COMPLEX NUMBERS, COMPLEX VARIABLES, AND COMPLEX NUMBERS, COMPLEX VARIABLES, AND COMPLEX NUMBERS, COMPLEX VARIABLES, AND COMPLEX NUMBERS, COMPLEX VARIABLES, AND 

COMPLEX FUNCTIONS COMPLEX FUNCTIONS COMPLEX FUNCTIONS COMPLEX FUNCTIONS     
 

Complex Numbers Using the notation 1= −j , one can 

express all complex numbers in engineering calculations as 

 

 = +z x jy  
 

where x  is the real part and jy  is the imaginary part. Notice that both x  and y  

are real and that j  is the only imaginary quantity in the expression above. 

x

y

z

θ

 
Fig. 2-1  Complex plane representation of a complex number z . 

 

 

The Magnitude, or absolute value, of z  is defined as the length of the directed 
segment shown in Fig. 2-1. 

 

2 2
Magnitude of = = +z z x y  

 

The angle of z  is the angle that the directed line segment makes with the positive 
real axis. A counterclockwise rotation is defined as the positive direction for 

the measurement of angles. 
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( )1

angle of tanθ
−

= =z y x  

 

A complex number can be written in rectangular form as: 

 

( )
 rectangular form

cos sinθ θ

= +

= +





z x jy

z z j
 

 

and in polar form as 

 

 polar form
θ

θ= ∠

=





j

z z

z z e
 

 

In converting complex numbers from rectangular to polar from , we use 

 

2 2 1

, tanθ
−

= = + =
 
 
 

y
z z x y

x
 

 

To convert complex numbers from polar to rectangular form, we employ 

 

cos , sinθ θ= =x z y z  

 

 

Complex Conjugate. The complex conjugate of  = +z x jy  is 

defined as 

 = −z x jy  

 
The complex conjugate of z  thus has the same real part as z  and an imaginary 
part that is the negative of the imaginary part of z  as shown in Fig. 2-2. Notice 
that 

x

y
z

θ

z
−y

 
Fig. 2-2  Complex number z  and its complex conjugate z . 
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( )

( ) ( )

cos sin

cos sin

θ θ θ

θ θ θ

= + = ∠ = +

= − = ∠ − = −

z x jy z z j

z x jy z z j
 

 

 

Euler’s Theorem. The power series expansions of cosθ  and 

sinθ  are, respectively, 

 
2 4 6

cos 1
2! 4! 6!

 
θ θ θ

θ = − + − +�  

and 

 
3 5 7

sin
3! 5! 7!

 
θ θ θ

θ θ= − + − +�  

Thus  

 

( ) ( ) ( )
2 3 4

cos sin 1
2! 3! 4!

θ θ θ
θ θ θ+ = + + + + +�

j j j
j j  

Since 
2 3

1
2! 3!

= + + + +�
x x x
e x  

it follows that  

cos sin
θ

θ θ+ =
j

j e  

 

Using the above relation, one can express the sine and cosine in complex form. 

Noting that  
θ− je  is the complex conjugate of 

θje  and that 

 

cos sin

cos sin

θ

θ

θ θ

θ θ
−

= +

= −

j

j

e j

e j
 

 

By adding the above expressions together, we find that 

 

cos
2

θ θ

θ

−
+

=

j j
e e

 

 

while by subtracting the second expression above from the first one, we obtain 

 

sin  
2

θ θ

θ

−
−

=

j j
e e

j
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Complex Algebra. 
 

Equality of complex numbers. Two complex numbers 1z  and 2z  

are said to be equal if and only if their real parts are equal and their imaginary parts 

are equal. So if two complex numbers are written 

 

1 1 1,= +z x jy  and  2 2 2= +z x jy   

 

Then 1 2=z z  if and only if 1 2=x x  and 1 2=y y . 

 

 

Addition. Two complex numbers 1z  and 2z  in rectangular form can be 

added by adding the real parts and the imaginary parts separately: 

 

( ) ( ) ( ) ( )1 2 1 1 2 2 1 2 1 2
+ = + + + = + + +z z x jy x jy x x j y y  

 

 

Subtraction. Subtracting one complex number from another can be 

considered as adding the negative of the former: 

 

( ) ( ) ( ) ( )1 2 1 1 2 2 1 2 1 2
− = + − + = − + −z z x jy x jy x x j y y  

 

 

Multiplication. If a complex number is multiplied by a real number, the 

result is a complex number whose real and imaginary parts are multiplied by that 

real number: 

 

( ) , (  real number)= + = + =az a x jy ax jay a  

 

If two complex numbers appear in rectangular form and we want the product in 

rectangular form, multiplication is accomplished by using the fact that 
2

1= −j . Thus, 

if two complex numbers are written 

 

1 1 1 2 2 2,= + = +z x jy z x jy  

Then 

 

( )( )

( ) ( )

2

1 2 1 1 2 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

= + + = + + +

= − + +

z z x jy x jy x x jx y jy x j y y

x x y y j x y y x
 

 

In polar form, multiplication of two complex numbers can be done easily. The 

magnitude of the product is the product of the two magnitudes, and the angle of the 

product is the sum of the two angles. So if two complex numbers are written 
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1 1 1 2 2 2
,θ θ= ∠ = ∠z z z z  

then 

( )1 2 1 2 1 2
z z z z θ θ= ∠ +  

 
 

Multiplication by j. It is important to note that multiplication by j  is 

equivalent to a counterclockwise rotation by 90 .�  For example, if  
 

= +z x jy  

then 

( ) 2= + = + = − +jz j x jy jx j y y jx  
 

or, noting that 1 90= ∠j , if 

 

θ= ∠z z  

then 

( )1 90 90θ θ= ∠ ∠ = ∠ +jz z z  

 

Fig. 2-3 illustrates the multiplication of a complex number z  by j . 
 

z

jz

 

Fig. 2-3  Multiplication of a complex number z  by j . 
 

 

Division. If a complex number 
1 1 1

θ= ∠z z  is divided by another 

complex number  
2 2 2

θ= ∠z z  , then  

 

( )1 1 1 1

1 2

2 2 2 2

θ
θ θ

θ

∠
= = ∠ −

∠

z z z

z z z
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That is, the result consists of the quotient of the magnitudes and the difference of 

the angles. Division in rectangular form can be done by multiplying the denominator 

and numerator by the complex conjugate of the denominator. For instance, 

 

( )

( )

( )( )

( ) ( )

( ) ( )

( )
( )

( )
( )

( )

2

1 1 1 1 1 2 2

2 2 2 2 2 2 2

complex Conjugate of 

1 2 1 2 2 1 1 2

2 2

2 2

1 2 1 2 2 1 1 2

2 2 2 2

2 2 2 2

+ + −
= =

+ + −

+ + −
=

+

+ −
= +

+ +

�����
z

z x jy x jy x jy

z x jy x jy x jy

x x y y j x y x y

x y

x x y y x y x y
j

x y x y

 

 

 

Division by j. Division by j  is equivalent to a clockwise rotation by 

90 .�  For example, if  
= +z x jy  

 

then 

( ) ( )

1

+ + −
= = = = −

−

z x jy x jy j jx y
y jx

j j jj
 

 

or,  

( )90
1 90

θ
θ

∠
= = ∠ −

∠

�

�

z z
z

j
 

 

Fig. 2-4 illustrates the division of a complex number z  by j . 

/z j

 

Fig. 2-4  Division of a complex number z  by j . 
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Powers and roots. Multiplying z  by n  times, we obtain 
 

( )θ θ= ∠ = ∠
n nn

z z z n  

 

Extracting the n th root of a complex number is equivalent to raising the number to 
1 n/ th power. 

( )
1 11 θ

θ= ∠ = ∠
n nnz z z

n
 

 

For instance, calculate ( )
3

8 66 5j− =. ?  
 

Remember :  

 
The real part 8 66= = .x  
The imaginary part 5= =y  

The magnitude 
2 2 2 2

8 66 5 10= = + = + =.z x y  

The angle ( ) ( )1 1
5

30
8 66

θ
− −

−
= = = = −

�

tan tan
.

y

x
 

Therefore, 

( ) ( )
33

8 66 5 10 30 1000 90 0 1000 1000− = ∠ − = ∠ − = − = −
� �. j j j . 

 

Remarks. It is important to note that 
 

zw z w

z w z w

=

+ ≠ +
 

 

 

Complex Variable. A complex variable has a real part and an 

imaginary part, both of which are constant. If the real part or the imaginary part (or 

both) are variables, the complex number is called a complex variable.  In the 
Laplace transformation, we use the notation s  to denote a complex variable; that is, 

 

s jσ ω= +  

 

where σ  is the real part and jω  is the imaginary part. (Notice that both σ  and  

ω  are real.) 

 

 

Complex Function. A complex function ( )F s , a function of s  
has a real part and an imaginary part, or  
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( ) x yF s F jF= +  

where xF  and yF  are real quantities. 

Magnitude of ( )F s = ( ) 2 2

x yF s F F= +  

Angle of ( )F s = ( )1

y xF Fθ −= tan  

 

The angle is measured counterclockwise from the positive real axis. The complex 

conjugate  of ( )F s  is ( ) x yF s F jF= − . 

 

Complex functions commonly encountered in linear systems analysis are single-
valued functions of s  and are uniquely determined for a given value of s . Typically, 
such functions have the form 

 

( )
( )( ) ( )

( )( ) ( )
1 2

1 2

m

n

K s z s z s z
F s

s p s p s p

+ + +
=

+ + +

�

�
 

 

• Points at which ( ) 0F s =  are called zeros. That is,  

1 2= − = −,s z s z  = −�, , ms z  are zeros of ( )F s . 

 

• Points at which ( )F s = ∞  are called poles. That is, 

1 2 ns p s p s p= − = − = −�, , ,  are poles of ( )F s . 

 

• If the denominator of ( )F s  involves k −multiple factors ( )
k

s p+ , then 

s p= −  is called a multiple pole of order k  or repeated pole of 

multiplicity k . If 1k = , the pole is called a simple pole. 
 
 

█ ExampleExampleExampleExample 
 

( )
( )( )

( )( )( )
2

2 10

1 5 15

+ +
=

+ + +

K s s
G s

s s s s
 

 

• Zeros of ( )G s  are values of s  which make ( ) 0G s = , that is 

2 10s s= − = −,   

 

• Poles of ( )G s  are values of s  which make ( )G s = ∞ , that is 

0 1 5= − = − = − ⇒s s s, ,  Simple and distinct poles 
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1 5 1 5= − = −s s,  ⇒double pole or (pole of multiplicity 2) 

 
Since for large values of s  (when → ∞s )  

( )
3

=
k

G s
s

 

 

( )G s  possesses a triple zero at ( )= ∞ ∞ ∞s , ,  ( pole of multiplicity 3). If points at 

infinity are included, ( )G s  has the same number of poles as zeros.  

To summarize: ( )G s  has five zeros, ( )2 10= − − ∞ ∞ ∞s , , , ,  

and five poles, ( )0 1 5 15 15= − − − −s , , , ,  
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2222....3333 LAPLACE TRANSFORMATILAPLACE TRANSFORMATILAPLACE TRANSFORMATILAPLACE TRANSFORMATIONONONON    
 

What is the Laplace Transform? 

It is a solution technique that transforms differential equations in the time domain 

into algebraic equations in the s-domain.  

 

Why use Laplace Transform? 
 

The Laplace transform is a powerful tool formulated to solve a wide variety of 

Initial-Value Problems (IVP). The strategy is to transform the difficult differential 

equations into simple algebraic problems where solutions can be easily obtained. One 

then applies the Inverse Laplace transform to retrieve the solutions of the original 

problems. This can be illustrated as follows: 

 

1−
L

L

 
 

 

Definition  
 

The Laplace Transform ( )F s of ( )f t is defined as  
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where   ( )f t =  a time function such that ( )f t = 0 for 0t <  

   s =  a complex variable 
   ( )F s =  Laplace transform of ( )f t  

 

 

Exponential Function:  Consider the exponential function shown 

in Fig. 2-5: 

 

0 for 0
( )

for 0
α−

<
= 

≥
t

t
f t

Ae t
 

where A  and α  are constants. The Laplace 

transform of ( )f t  can be obtained as follows t

(((( ))))f t

αααα−−−− tAe

Fig. 2-5.  Exponential function 

( )

0 0

( )
s tt stt

Ae e dt A e
A

F s Ae dt
s

α αα

α

∞ ∞
−− −− +  = = ==   +∫ ∫L  

 

 

Step Function: Consider a step function as shown in Fig. 2-6: 
 

0 for 0
( )

for 0

<
= 

>

t
f t

A t
 

where A  is a constant. Notice that this is a 

special case of the exponential function 
t

Ae
α−
 

where 0.α =  The step function is undefined at 

0=t . Its Laplace Transform is given by: 

t

( )f t

A

 
Fig. 2-6.  Step function 

( ) [ ]
0

( ) st
f t A Ae dt

A
F s

s

∞
−= = = =   ∫L L  

The step function whose height is unity is called a unit-step function. The unit step 

function that occurs at time 0t t=  is frequently written as ( )01 t t− . The previous 

step function whose height is A  can be written as ( )1 .A t  The Laplace Transform of 

the unit-step function that is defined by  
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0 for 0
1( )

1 for 0

<
= 

>

t
t

t
 

is  

( )
0

1
1

( ) 1 st
eF s t d

s
t

∞
−=  =  =∫L  

 

Physically, a step function occurring at time 0t t=  corresponds to a constant signal 

suddenly applied to the system at time t  equals 0.t  

 

 

Ramp Function: Consider a ramp function as shown in Fig. 2-7 
 

0 for 0
( )

for 0

<
= 

≥

t
f t

At t
 

where A  is a constant. The Laplace Transform 

of the ramp function is: 

[ ]
0

( ) st
F s At A te dt

∞
−= = ∫L  

t

( )f t

α

( )f t At=

slope tan Aα= =

 
Fig. 2-7.  Ramp function 

 

To evaluate the above integral we use the formula for the integration by parts  

 

0

0 0

|udv uv vdu

∞ ∞
∞= −∫ ∫  

where in this case 

1− −

= ⇒ =

= ⇒ = −st st

u At du A

dv e dt v e
s

 

Substituting these expressions into equation the above integral leads to the 

following expression:  

[ ]

( ) ( )

0

0 0

02 2 2

|

(0 0)

(

| 0

)
st st

st

st

Ate Ae
Ate dt dt

s s

Ae A

s s

F s At

A

s

∞ ∞− −
− ∞

−

∞

= = − +

− −
= − + = −

=

=

∫ ∫L

 

 



ME 413 Systems Dynamics & Control   Chapter Two: Laplace transform  

 

 

13/36 
 

Sinusoidal Function: The Laplace Transform of the sinusoidal function 
 

( )

0 for 0
( )

sin for 0

t
f t

A t tω

<
= 

≥
 

 

 
 

Fig. 2-8.  Sinusoidal function 

 

where A  and ω  are constants, is obtained as follows. Noting that  

cos sin cos sinj t j t
e t j t e t j t

ω ωω ω ω ω−= + = −and  

sin tω  and cos tω can be written as  

 

( ) ( )1 1
sin cos

2 2

j t j t j t j t
t e e t e e

j

ω ω ω ωω ω− −= − = +and  

Hence 

[ ] ( )
0

2 2 22 22

1 1

2 2 2

2

2

i

2

s n j t j t stA A A
e e e dt

j j s j j s j

A s j s j A j

j s

A t

A

sj s

ω ω

ω ω

ω ω

ω

ωω

ωω ω

∞
− −= − = −

− +

+ − +   
= = =   

+ +    +

∫L

 

 

Similarly 

 

[ ] ( )
0

2 2 2 2 22

1
cos

1

2 2 2

2

2 2

j t j t stA A A
e e e dt

s j s j

A

A t

As

s

s j s j A s

s s

ω ωω
ω ω

ω ω

ω ωω

∞
− −= + = +

− +

+ + −   
= = =   

+ +    +

∫L
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Remark:  The Laplace Transform of any Laplace transformable function 

( )f t  can be obtained by multiplying ( )f t  by 
st

e
−
 and then integrating the product 

from 0  to ∞ . Once we now the method of obtaining the Laplace Transform, 

however, it is not necessary to derive the Laplace transform of ( )f t  each time. 

Laplace Transform Tables can conveniently be used to find the transform of a given 

function ( )f t . Refer to Table 2.1 of the Textbook. Notice that the Laplace 

Transforms provided in Tables in general are valid for 0 t≤ < ∞  . 

 

 

Translated Functions: Let us obtain the Laplace transform  of the 

translated function ( ) ( )1f t tα α− −  where 0.α ≥  This function is zero for .t α<   

 

t t
0 0 α

( )1( )f t t ( )1( )f t tα α− −

 

Fig. 2-9  Function ( ) ( )1f t t  and translated function ( ) ( )1f t tα α− −  

 

 

By definition, the Laplace transform of ( ) ( )1f t tα α− −  is 

 

( ) ( ) ( ) ( )
0

1 1 st
f t t f t t e dtα α α α

∞
−− − = − −   ∫L  

 

Let tτ α= − , then  

 

,   and   0t t dt dτ α τ τ= ⇒ = − → ∞ ⇒ → ∞ =  

and 

( ) ( ) ( ) ( ) ( )

0

1 1
sst

f t t e dt f e d
τ α

α

α α τ τ τ
∞ ∞

− +−

−

− − =∫ ∫  

 

Noting that ( ) ( )1 0f τ τ =  for 0,τ <  we can change the lower limit from α−  to 0. 

Thus 
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( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

0 0

0

1 1

( )

s s s s

s s s

f e d f e d f e e d

e f e d e F s

τ α τ α τ α

α

α τ α

τ τ τ τ τ τ τ τ

τ τ

∞ ∞ ∞
− + − + − −

−

∞
− − −

= =

= =

∫ ∫ ∫

∫

 

where  

( ) ( ) ( )
0

st
F s f t f t e dt

∞
−= =   ∫L  

and also 

( ) ( )1 ( ) 0sf t t e F sαα α α−− − = ≥  L  

 

 

Pulse Function: Consider the pulse function shown in Fig. 2-10 
 

0

0

0

for 0
( )

0 for 0,

A
t t

tf t

t t t

< <
=

< <







 

 

where A  and 0t  are constants. The pulse function 

may be considered as a step function of height 

0A t  that begins at 0t =  and that is superimposed 

by a negative step function of height 0A t  

beginning at 0t t= ; that is , 

t

( )f t

0

A

t

0
0t  

Fig. 2-10  A pulse function 

( ) ( )
0

0 0

( ) 1 1
A A

f t t t t
t t

= − −  

 

t
t

( )f t

0

A

t

0
0t

t

( )
0

1
A

t
t

0
0t 0

0
t

( )0

0

1
A

t t
t

−

 

Then the Laplace Transform of ( )f t  is obtained as 

 

L ( ) ( ) ( ) ( )0 0

0

0 0 0 00

1 1
1 1 1

st stA A A A
t t t e

t t t s t s

A
f t e

t s

−−       
= − − = − =      

      
−   L L  
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Impulse Function: The impulse function is a special limiting case of the 
pulse function. Consider the impulse function 

 

( ) 0

0
0

0

0

lim for   0   

0 for     0,  

t

A
t t

tf t

t t t

→

< <
=

< <







 

Fig. 2-11 depicts the impulse function shown 

in Fig. 2-10 as 0t  approaches 0.  t

( )f t

0

A

t
→ ∞0 0t →

 
 

Fig. 2-11.  Impulse function 
 

Since the height of the impulse function 0/A t  and the duration is 0t , the area under 

the impulse is equal to .A  As the duration 0t  approaches 0,  the height 0/A t  

approaches infinity, but the area under the impulse remains equal to .A  Notice that 

the magnitude of the impulse is measured by its area. Referring to the transformed 

equation previously derived for the pulse function, i.e.,  

 

L ( )[ ] ( )0

0

1
s tA

f t e
t s

−
= −  

 

the Laplace Transform of the impulse function is shown to be 

 

L ( )[ ]
( )

( )

( )

( )
( )

0

00

0 0 0

0

0 0 0

0

0

0

1
1

lim lim lim

s t

s ts t

t t t

f

d
A e

A seA e dt

dt s s
t s

d

t A

t

−

−−

→ → →

−
−

= = = =

       
 
 

 

 

Thus the Laplace Transform of the impulse function is equal to the area under the 

impulse. The impulse function whose area is equal to unity is called the unit 

impulse function or the Dirac delta function. The unit impulse function occurring 

at 0t t=  is usually denoted by 

 

( )

( )

( )

0 0

0 0

0

0 for     

for     

1

t t t t

t t t t

t t

δ

δ

δ
∞

−∞

− = ≠

− = ∞ =

− =








∫
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Relationships among Singular Functions  
 

The ramp, step, and impulse functions represent a family of functions, which as 

shown in Fig. 2-12 are related by successive integrations. 

 

( )ru t

t

1.0

1.00

Time

( )su t

t

1.0

0

Time

( )tδ

0 t
Time

( ) 1tδ =  L ( )
1

su t
s

=  L ( ) 2

1
ru t

s
=  L

 
Fig. 2-12  The relationship between singularity functions. 

 

 

Time Shifting of Singularity Functions  
 

The singularity functions may be used to describe transient inputs that take place at 

a time other than 0t = . The discontinuity associated with each function occurs when 

the function argument is zero; therefore, a step that occurs at time 0t  may be 

written as ( )0s
u t t−  since 0 0t t− =  at 0t t= . This property may be used to 

synthesize a transient function from a sum of singularity functions; for example, Fig. 

2-13 shows the function ( ) ( ) ( ) ( ) ( )
0

2 2 3 .
s s r r

u t u t u t t u t u t= − − + − − −  

 

1

2

1−

2−

1 2 3 4

( )s
u t

( )2
r

u t −

( )3
r

u t− −

( )2 1
s

u t− −

( )u t

t
1

2

1−

2−

1 2 3 4

( )u t

t

 
 

Fig. 2-13  A transient function ( ) ( ) ( ) ( ) ( )2 1 2 3
s s r r

u t u t u t u t u t= − − + − − −  

synthesized from unit singularity functions 
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Multiplication of ( )f t  by 
te α−
 

 

If ( )f t  is Laplace transformable, its Laplace transform being ( )F s , then the 

Laplace transform of ( )t
e f t

α−
 is 

 

L ( ) ( ) ( ) ( ) ( )
0 0

s tt stt
e f t e dt f t ef t Fdte s

α αα α
∞ ∞

− +−− −  + = = = ∫ ∫  

 
 

█ ExampleExampleExampleExample Given Laplace transforms of  
 

L [ ] ( )2 2
sin t F s

s

ω
ω

ω
= =

+
 and L [ ] ( )2 2

cos
s

t G s
s

ω
ω

= =
+

 

 

Find Laplace transform of sint
e t

α ω−
 and cost

e t
α ω−

 

 

█ SolutionSolutionSolutionSolution  

 

L ( )
( )

2 2
sint

e t F s
s

α ω
ω α

α ω

−  = + = 
+ +

 

and 

L ( )
( )

2 2
cost s

e t G s
s

α α
ω α

α ω

− +
  = + = 

+ +
 

 

 

Laplace Transform Theorems 

Differentiation Theorem 

L ( ) ( ) ( ) 
= −  

0
d

f t sF s f
dt

 

L ( ) ( ) ( ) ( )
 

= − − 
 

�
2

2
2 0 0

d
f t s F s sf f

dt
 

Similarly for the nth derivative of ( )f t , we obtain 

L ( )
( )1

1 2( ) (0) (0) (0)
n n

n n n

n

d
f t s F s s f s f f

dt

−
− − 

= − − − − 
 

� �  
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In the above, the following quantities ( ) ( )
( )

( )
1

0 , 0 , , 0
n

f f f
−

� �  represent the values 

of ( ) ( ) ( )1 1, / , , / ,n n
f t df t dt d f t dt

− −
�  respectively, evaluated at 0.t =  

 

█ ExampleExampleExampleExample Given  

 

 

Find the Laplace transform F(s) of f(t).  

█ SolutionSolutionSolutionSolution Using the Differentiation Theorem on the first two terms 

leads to: 

  

 

Using the definition of the Laplace transform on the remaining term gives: 

 

From these results, the Laplace transform F(s) of the given equation can be 

expressed as:  

 

Rearranging this expression by factoring leads to:  

 

Solving this expression for X(s) gives the following answer:  
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 Final Value Theorem (FVT) 
 

[ ] ( )
0

lim ( ) lim
t s

f t s F s
→∞ →

=     

 
 

█ ExampleExampleExampleExample Given: 

 

Find the final value of x(t).  

 

█ SolutionSolutionSolutionSolution To solve this problem, use the Final Value Theorem (FVT) 

[ ] ( )
0

lim ( ) lim
t s

f t s F s
→∞ →

=     

Substituting the given expression into this equation leads to the solution: 

 

 

 Initial Value Theorem (IVT) 

( )(0 ) lim
s

f s F s
+

→∞
=     

 

█ ExampleExampleExampleExample    Given: 
 

 

Find the initial value of x(t), i.e. find x(0).  

 

█ Solution To solve this problem, use the Initial Value Theorem (IVT): 

 

Substituting the given expression into this equation leads to the solution: 
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For this example, as "s" goes to infinity, all terms involving "s" in the numerator and 

denominator cancel. (Note that if there was one extra "s" term in the denominator 

than there was in the numerator, this extra term would not be cancelled out and the 
entire expression would go to zero.) 

 

 Integration Theorem  
 

L
( )

0

( )

t
F s

f t t
s

 
= 

 
∫ d  

 
 

█ ExampleExampleExampleExample  Given: 

 

Find Laplace transform of the given expression. (Hint: Let f(t) = At)  

 

█ Solution Solution Solution Solution  To solve this problem, use the integration theorem: 

 

Substituting the result for F(s) obtained in the previous example leads to 
the solution:  

 

 
 

Use of MATLAB 
 
 

█ ExampleExampleExampleExample Use MATLAB to find Laplace Transform of ( ) cos(3 )f t t t=  
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█ Matlab  SolutioMatlab  SolutioMatlab  SolutioMatlab  Solutionnnn 
 

>> syms t s 

>> f = t*cos(3*t); 

 

Then the Laplace transform of f is given by 

 

>> F = laplace(f) 

F =1/(s^2+9)*cos(2*atan(3/s)) 

>> F = simplify(expand(F)) 

F =(s^2-9)/(s^2+9)^2 

 

Thus we obtain the Laplace transform  

( )
( )

2

2
2

9

9

s
F s

s

−
=

+
 

 
 

█ ExampleExampleExampleExample  Use MATLAB to find Laplace Transform of  

( ) 3 5cos(2 )f t t t= −  

 

█ Matlab  SolutionMatlab  SolutionMatlab  SolutionMatlab  Solution 
 

>> syms t s 

>> f=3*t-5*sin(2*t); 

 

Then the Laplace transform of f is given by 

 

>> F = laplace(f) 

F=3/s^2-10/(s^2+4) 

>> F = simplify(expand(F)) 

F =-(7*s^2-12)/s^2/(s^2+4) 

 

Thus we obtain the Laplace transform  

( )
( )

2

2 2

7 12

4

s
F s

s s

− +
=

+
 

 

 

2222....4444 INVERSE LAPLACE TRANINVERSE LAPLACE TRANINVERSE LAPLACE TRANINVERSE LAPLACE TRANSFORMATIONSFORMATIONSFORMATIONSFORMATION 

 

The inverse Laplace transformation refers to the process of finding the time function 

( )f t  from the corresponding Laplace transform ( )F s ; i.e., 

 

( ) [ ]1 ( )f t F s−= L  

 

Several methods are available for finding the inverse Laplace transforms 

 



ME 413 Systems Dynamics & Control   Chapter Two: Laplace transform  

 

 

23/36 
 

1. Use Tables of Laplace transforms 
2. Use partial-fraction expansion method. 

 

Partial-Fraction Expansion for Finding Inverse Laplace 
Transforms 

 

If ( )F s , the Laplace transform of ( )f t , is broken up into components 

 

( ) ( ) ( ) ( ) ( )1 2 3 n
F s F s F s F s F s= + + + +�  

 

and if the inverse Laplace transform of ( )1F s , ( )2F s , ( ) ( )3 , ,
n

F s F s� , are readily 

available then  

 

[ ] ( ) ( ) ( )

( ) ( ) ( )

1 1 1 1

1 2

1 2

( )
n

n

F s F s F s F s

f t f t f t

− − − −  = + + +        

= + + +

�

�

L L L L
 

 

where ( )1f t , ( )2f t , � , ( )nf t  are the inverse Laplace transform of ( )1F s , ( )2F s , 

( ),
n

F s� , respectively.  ( )F s  frequently occurs in the form 

 

( )
( )
( )

( ) ( ), deg deg= = < =
N s

F s m N s D s n
D s

 

 

where ( )N s  and ( )D s  are polynomials in s  and the degree of ( )D s  is not higher 

than the degree of ( )N s . Notice that applying the partial-fraction expansion 

technique in the search for the inverse Laplace transform of ( ) ( ) ( )/=F s N s D s  

requires that the poles of ( )D s  (roots of the denominator) must be known in 

advance. Consider ( )F s  written in the factored form 

 

( )
( )
( )

( )( ) ( )
( ) ( ) ( )

1 2

1 2

+ + +
= =

+ + +

�

�

n

n

N s K s z s z s z
F s

D s s p s p s p
 

 

where 1 2, , , np p p…  and 1 2, , , nz z z…  are either real or complex quantities, but for 

each ip  or iz  there will occur the complex conjugate of ip  or iz , respectively. Here 

the highest power of s  in ( )N s  is assumed to be higher than that in ( )D s . 

 

Notice that if the degree of the numerator is greater than (or equal to) that of the 

denominator, then polynomial division must be performed so that the remainder 

polynomial is of a lower degree than ( )D s . For instance, 
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( ) ( )2

3

2 2
deg 2 deg 1

2 2
,

1 1
s s

s s
s

s s
− + < +

+ − +
= +

+ +
 

 

Case I. Distinct Real Poles 
 

In this case, ( )F s  can be expanded into a sum of partial fractions 

 

( )
( )
( ) ( ) ( ) ( )

1 2

1 2

= = + + +
+ + +

� n

n

N s r r r
F s

D s s p s p s p
 

 

where ( )1,2, ,kr k n= …  are constants. The coefficient kr  is called the residue at the 

pole at ks p= − . The value of kr  can be found by multiplying both sides of the above 

equation ( )ks p+  and letting ks p= − , which gives 

 

( )
( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

1 2

1 2
k k

k k k k n k

k k

k ns p s p

N s r s p r s p r s p r s p
s p r

D s s p s p s p s p
=− =−

   + + + +
+ = + + + + + =   

+ + + +   
� �  

 

We see that all the expanded terms drop out with the exception of kr .Thus the 

residue kr  is found from  

( )
( )
( ) =−

 
= + 
 

k k

ks p

N s
r s p

D s
    (2.6) 

Since  

( )
1− − 

= 
+ 

k
k

k

k
p tr

L r e
s p

 

( )f t  is obtained as 

 

( ) [ ] 1 21

1 2( ) 0kp t p t p t

kf t F s re r e r e t
− − −−= = + + + ≥�L  

 
 

█ ExampExampExampExamplelelele Find the inverse Laplace transform of 
 

( )( )
3

( )
1 2

s
F s

s s

+
=

+ +
 

 

█ SolutionSolutionSolutionSolution    The partial fraction expansion of ( )F s  is 

( )( ) ( ) ( )
1 23

( )
1 2 1 2

s r r
F s

s s s s

+
= = +

+ + + +
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where 1r  and 2r  are found by using Equation (2.6) 

( )1
1+=r s

( )

( )

3

1+

+s

s ( )

( )
( )

1
1

3 1 3
2

2 1 22
=−=−

   + − +
  = = = 

+ − + +    s
s

s

ss
 

( )2
2+=r s

( )

( ) ( )1 2

3+

+ +

s

ss

( )
( )

2
2

3 2 3
1

1 2 1
=−=−

   + − +
  = = = − 

+ − +     s
s

s

s
 

Thus 

( )( ) ( ) ( )
3 2 1

( )
1 2 1 2

s
F s

s s s s

+ −
= = +

+ + + +
 

( ) [ ]
( ) ( )

1 1 1 22 1
( ) 2 0

1 2

t t
f t F s e e t

s s

− − − − −
   −

= = + = − ≥   
+ +   

L L L  

 

Use of MATLAB: Use MATLAB to find the inverse Laplace Transform of the above 

example 

( )( )
3

( )
1 2

s
F s

s s

+
=

+ +
 

>> syms t s 

>> F = (s+3)/((s+1)*(s+2)) 

 

Then the inverse Laplace transform of ( )f t  is given by 

 

>> F = ilaplace(f) 

f =2*exp(-t)-exp(-2*t) 

>> pretty(f) 

2 exp(-t) - exp(-2 t) 

 

Thus we obtain the Laplace transform 

 

( ) [ ]1 2( ) 2 0t t
f t L F s e e t

− − −= = − ≥  

 

 

█ ExampleExampleExampleExample  Obtain the inverse Laplace transform of  

( )( )

3 25 9 7
( )

1 2

s s s
F s

s s

+ + +
=

+ +
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█ SolutionSolutionSolutionSolution    

Since the degree of the numerator is higher than that of the denominator 
polynomial, we must divide the numerator by the denominator 

( )( ) ( ) ( )
previous example

3 2 1
( ) 2 2

1 2 1 2

+ −
= + + = + + +

+ + + +
���������

s
F s s s

s s s s
 

Notice that ( ) 1tδ =  L  and 
( )d t

s
dt

δ 
= 

 
L , so the inverse Laplace transform of 

( )F s  is given by 

( ) ( ) ( ) 22 2 0t td
f t t t e e t

dt
δ δ − −= + + − ≥  

 

Case II. Complex Conjugate Poles 
 

Consider a function ( )F s  that involves a quadratic factor 
2

s as b+ +  in the 

denominator. If this quadratic factor has a pair of complex conjugate poles, then it is 

better not to factor this term in order to avoid complex numbers. For example, if 

( )F s  is given as  

( )

( )2
( )

p s
F s

s s as b
=

+ +
 

where 0a ≥  and 0b ≥ , and 
2 0s as b+ + =  has a pair of complex conjugate poles, 

then expand ( )F s  into the following partial-fraction expansion form: 

 

2
( )

c ds e
F s

s s as b

+
= +

+ +
 

 

 

 

█ ExampleExampleExampleExample  Obtain: the inverse Laplace transform of  

 

2

2 12
( )

2 5

s
F s

s s

+
=

+ +
 

 

█ SolutionSolutionSolutionSolution 1: 1: 1: 1: Use of Complex NumbersUse of Complex NumbersUse of Complex NumbersUse of Complex Numbers 
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Notice that the poles of the denominator are 

 

2

1,2

4 2 4 4 1 5 2 16
1 2

2 2 2

b b ac
s j

a

− ± − − ± − × × − ± −
= = = = − ± . 

 

Therefore ( )F s  can be written as 

 

( )( )2

2 12 2 12
( )

2 5 1 2 1 2 1 2 1 2

α β+ +
= = = +

+ + + + + − + + + −

s s
F s

s s s j s j s j s j
 

 

where the constants α  and β  that can be found as before 

 

( )1 2
α =

+ +s j ( )

( )

2

1 2

12

+

+

+s j

s

( )

( )( )
( )

1 2

1 2

1

2 12 10 4 5
1

1 2 41 2 2 2
− −=

− −

−

+ −
= = = −

+ − −+ − −
js

j

j

j
j

j js j
 

( )1 2
β =

+ −s j ( )

( ) ( )

2 12

1 2 1 2

+

+ + + −j ss j

s ( )( )
( )

1 2

1 2

1 2

2 12 10 4 5
1

1 2 4 2
−= +

+ +
= = = +

+ +

− +

− + +
js

j

j

j
j

j j
 

 

Notice that β  is the complex conjugate of α . Substitute the values of α  and β  

into the expression of ( )F s  

2

5 5
1 1

2 12 2 2( )
2 5 1 2 1 2

− +
+

= = +
+ + + + + −

j j
s

F s
s s s j s j

 

 

and 

 

( ) [ ] ( ) ( )1 2 1 21

2222

5 5
( ) 1 1

2 2

5 5

2 2

t j t t j

j t j t

t j t t j tt

f t F s j e j e

j e e j e ee e e e

− + − −−

− − −− − −

   
= = − + +   

   

= − + +

L

 

( ) ( )

( ) ( )

2 2

2 2

cos 2

2 2

2 2

sin 2

2
2

2
2

2 cos

5
2

5
2

5 sin 22

− −
−

−

−

−
−

−

−

−

 −
= +  

 

 −
= −  

 

=

 +
 
 


 



−

+

 ������������� �

j t j t
t

j t j t
t

t

t

j t j t
t

j t j t
t

t

t

e e
e

e e
e

e e
j e

e e
e

ee

j

t t
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█ SolutionSolutionSolutionSolution 2: 2: 2: 2: Completing The squareCompleting The squareCompleting The squareCompleting The square 
 

The expression of ( )F s  can be written in general as 

 

2 2 2
( )

2

cs d
F s

s as a ω

+
=

+ + +
 

 
where a  and ω  are positive real. It is clear that the denominator in the above 

expression is a complete square, i.e., it can be written as 

 

( )2 2 2 2 2 22s as a s aω ω+ + + = + +  

 

Let’s us write the expression of ( )F s  into the following form 

( )

( )

( )

( )

( ) ( )

( )

( ) ( )

2 22 2 2 2 2

2 2 2 22 2 2 2

( )
2 ω ω ω

ω

ωω ω ω ω

+ + −+ +
= = =

+ + + + + + +

+ +− −
= + = +

+ + + + + + + +

c s a d cacs d cs d
F s

s as a s a s a

c s a c s ad ca d ca

s a s a s a s a

 

 

The inverse Laplace transform is then  

 

( ) [ ]
( )

( ) ( )
-1 -1 -1

2 22 2
( )

cos sinat at

s a d ca
f t F s c

s a s a

d ca
ce t e t

ω

ωω ω

ω ω
ω

− −

   + − 
= = +    

 + + + +      

− 
= +  

 

L L L

 

 

In our example we have  

 

( )

	 ( )
22

22 2 2

21

2 12 2 12 2 12
( )

2 5 2 1 4 1 2
s

s s s
F s

s s s s s

= +

+ + +
= = =

+ + + + + + +�����

 

 

Thus we have 1, 2, 2, 12.a c dω= = = =  Therefore, substitute into the expression of 

( )f t  
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( ) [ ]

( )

1

5

( ) cos sin

12 2 1
2 cos2 sin 2

2

2 cos2 5 sin 2 2cos2 5sin 2

a t a t

t t

t t t

d ca
f t F s ce t e t

e t e t

e t e t e t t

ω ω
ω

− − −

− −

=

− − −

− 
= = +  

 

− × 
= +  

 

= + = +

�����

L

 

 

Method 2: Use of Complex numbers 

 

This method is a lengthy process we will see it in a separate problem in the help 

session. 

 

Case III. Multiple Poles 
 

Consider the following expression of 

( )

2

3

2 3
( )

1

s s
F s

s

+ +
=

+
, 

As can be seen ( )F s  has poles 1, 1, 1.s = − − −  Thus we say ( )F s  has a pole 1s = −  

of multiplicity 3 . Hence ( )F s  can be written in the following form 

 

( )

( )
( ) ( ) ( ) ( )

2

3 2 1

3 3 2

2 3
( )

11 1 1

B ss s b b b
F s

A s ss s s

+ +
= = = + +

++ + +
 

 

where 1 2 3, , andb b b  are determined as follows. By multiplying both sides of the last 

equation by ( )
3

1s + , we obtain 

( )
( )
( )

( ) ( )
3 2

3 2 11 1 1
B s

s b b s b s
A s

+ = + + + +   (2.7) 

 

Then, letting 1,s = −  Equation (2.7) gives 

( )
( )
( )

3

3

1

1

s

B s
s b

A s
=−

 
+ = 

 
 

 

Also differentiation of both sides of Equation (2.7) gives 

( )
( )
( )

( )
3

2 11 2 1
B sd

s b b s
ds A s

 
+ = + + 

 
    (2.8) 

If we let 1,s = −  in Equation (2.8), then  
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( )
( )
( )

3

2

1

1

s

B sd
s b

ds A s
=−

 
+ = 

 
 

 

By differentiating both sides of Equation (2.8) with respect to s , we obtain 
 

( )
( )
( )

( )
( )
( )

2 2
3 3

1 12 2

1
1 2 1

2!

B s B sd d
s b b s

ds A s ds A s

   
+ = ⇒ = +   

   
 

 

Therefore 

( )
( )
( )

( )
3 3

3

1

1 1

=−

 
= + = + 
  s

B s
b s s

A s ( )

2

3

2 3

1

+ +

+

s s

s
( ) ( )

2

1

1 2 1 3 2

=−

 
  = − + − + =
 
  s

 

( )
( )
( )

( )
3 3

2

1

1 1

s

B sd d
b s s

ds A s ds
=−

 
= + = + 

  ( )

2

3

2 3

1

s s

s

+ +

+

[ ] ( )

1

2

11
2 3 2 2 2 1 2 0

s

ss

d
s s s

ds

=−

=−=−

 
 
 
 

 = + + = + = − + =   

 

( )
( )
( )

( )
2 2

3 3

1 2 2

1

1 1
1 1

2! 2!
s

B sd d
b s s

ds A s ds
=−

 
= + = + 

  ( )

2

3

2 3

1

s s

s

+ +

+

[ ] [ ]

1

1 1

1 1
2 2 2 1

2! 2!

s

s s

d
s

ds

=−

=− =−

 
 
 
 

= + = =

 

Therefore 

( ) ( ) ( )3 2

2 0 1
( )

11 1
F s

ss s
= + +

++ +
 

and  

( ) [ ]1 2( ) 0 0t t
f t F s t e e t

− − −= = + + ≥L  

 

 

2222....5555 SOLVING LINEAR, TIME INVARIANT 
DIFFERENTIAL EQUATIONS 

 

The Laplace transform method yields the complete solution (complementary solution 

and particular solution) of linear, time invariant, differential equations. Classical 

methods for finding the complete solution of a differential equation require the 

evaluation of integration constants from the initial conditions. In the case of Laplace 

transform method, however, this requirement is unnecessary because the initial 
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conditions are automatically included in the Laplace transform of the differential 

equation. 

 

 

█ Example Example Example Example   Initial Value Problem (IVP) 

 

Solve:  ( ) ( )" , 0 1, ' 0 1y y t y y+ = = =  

 

█ SolutionSolutionSolutionSolution 
 

By writing the Laplace transform of ( )y t  as ( ) ( )y t Y s=  L , we obtain  

( ) ( ) ( )

( ) ( ) ( ) ( )2

0

0 0

y t sY s y

y t s Y s s y y

= −  

= − −  

�

�� �

L

L
 

For zero initial conditions, i.e., ( ) ( )0 0 0y y= =� , the above transforms become  

 

( ) ( )

( ) ( )2

y t sY s

y t s Y s

=  

=  

�

��

L

L
 

 

Step 1: Take Laplace Transform (LT) of both sides of the above equation: 

 

	 	
2 2( ) (0) '(0) ( ) 1/

"

s Y s sy y Y s s

tyy
           

 

− − + =
�����������

LLL

 

or 

( )2

2

1
1 ( ) 1s Y s s

s
+ = + +  

 

Step 2: Solving for ( )Y s  gives 

 

( ) ( ) ( )2 2 2 2

1
( )

11 1

1 s
Y

s s
s

ss
= + +

+ ++  

Let    ( ) ( )22 2 2

1 1 1
( )

1
 

1
Q s

ss s s
= = −

+ +  

Therefore  
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( ) ( ) ( ) ( )22 222 2

1 1 1

1
( )

1 1

1

1
Y

s s

s
s

s s ss s+
= + + = +−

+ ++
 

 

Step 3: Solving  

( )
1

2 2

1
( ) co

1
s(

1
)

s
y t t t

s s

− −
 

=
 
 

= + +
+


 

L L  

 

The diagram below summarizes the approach 

 

1−
L

L

( ) ( )

" ,

0 1, ' 0 1

y y t

y y

+ =

= =
	 	

2 2( ) (0) '(0) ( ) 1/

"

s Y s sy y Y s s

tyy
           

 

− − + =
�����������

LLL

( )2 2
(

1
)

1
Y

s
s

s

s
= +

+
( )22

1 1( )

( ) cos( )

1

1
y t

y t t

s

s

s

t

− −
 
 

+

 
    

= +

+



=

L L

 
 
 

█ Example Example Example Example   Find the solution ( )x t  of the following Initial Value 

Problem (IVP) 

( ) ( )3 2 0, 0 , 0x x x x a x b+ + = = =�� � �  

where a  and b  are constants. 
 

█ Solution Solution Solution Solution     
 

Step 1: Take LT of both sides of the given equation to obtain an algebraic equation 

X(s) 

By writing the Laplace transform of ( )x t  as ( ) ( )x t X s=  L , we obtain  
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( ) ( ) ( )

( ) ( ) ( ) ( )2

0

0 0

x t sX s x

x t s X s s x x

= −  

= − −  

�

�� �

L

L
 

 

Take Laplace transform of both sides of the given equation  

 

( ) ( ) ( )
( )

( ) ( )
( )

( )
( )

2 0 0 3 0 2 0

x t x tx t

s X s s x x sX s x X s

         

 − − + − + =       
���

�
������� ����������������

L LL

 

 

By substituting the initial conditions ( ) ( )0 , 0x a x b= =�  into the last equations, 

one obtains  

 

( ) ( ) ( )2 3 2 0s X s a s b sX s a X s − − + − + =         

or 

( )2 3 2 3s s X s as b a + + = + +   

 

Step 2: Solving for ( )X s , we obtain  

 

( )

( )( )

1 2

2

1 2

3

3 2 1 2
s s

as b a K K
X s

s s s s
= + +

+ +
= = +

+ + + +�����

 

 

since ( )X s  has distinct poles, 1K  and 2K  can be found easily  

 

( )
1

1s
K

+
=

( )

( )

3

1

as b a

s

+ +

+ ( )

( )( )
( )

( )

1

2

1 3
2

1 22

2

s

a b a
a b

s

s
K

=−

− + +
= = +

− ++

+
=

( )

( )

3

2

as b a

s

+ +

+ ( )

( )( )
( )

( )
2

2 3

2 11
s

a b a
a b

s
=−

− + +
= = − +

− ++

 

Thus  

( )
2

1 2

a b a b
X s

s s

+ +
= −

+ +
 

 

Step 3: Take ( )1
X s

−   L to obtain the time domain solution ( )x t  
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( ) ( )

( ) ( )

1 1 1

2

2

1 2

2 0t t

a b a b
x t X s

s s

a b e a b e t

− − −

− −

+ +   
= = −      + +   

= + − + ≥

L L L
 

 

█ ExampleExampleExampleExample  Find the solution ( )x t  of the following Initial Value 

Problem (IVP) 

 

( ) ( )2 5 ( ), 0 0, 0 0x x x f t x x+ + = = =�� � �  

where ( )f t  is a function given by its graph. 

 

█ SolutionSolutionSolutionSolution  

t

( )f t

3

 

Step 1: Find the explicit expression of ( )f t  

The function ( )f t  given on the RHS of the IVP is a step function ( )u t  with height 

equals to 3. and [ ] [ ]( ) 3 3u t s= =L L  

Step 2: Take LT of both sides of the given equation to obtain an algebraic equation 

( )X s  

Remember that we have zero initial conditions. For zero initial conditions, i.e., 

( ) ( )0 0 0x x= =� , the above transforms become 

 

( ) ( )

( ) ( )2

x t sX s

x t s X s

=  

=  

�

��

L

L
 

 

Take Laplace transform of both sides of the given equation 

 

( ) ( ) ( )2 3
2 5s X s sX s X s

s
+ + =  

Solving for ( )X s , we obtain  

( )
( )

1

22

3

2 52 5

K cs d
X s

s s ss s s

+
= = +

+ ++ +
 

 

where 1,K  2K  and 3K  are found as follows 



ME 413 Systems Dynamics & Control   Chapter Two: Laplace transform  

 

 

35/36 
 

( ) ( )2

13 2 5K s s cs d s= + + + +  

or 

( ) ( )2

1 1 13 2 5K c s K d s K= + + + +  

By comparing coefficients of the 
2

s , s  and 
0

s , terms on both sides of this last 

equation respectively, we obtain 

 
0

1 1

1

1 1

2

1 1

: 5 3 3/5

:

te

2 0 2 2(3/5) 6 /5

: 0 3/

rms

terms

terms 5

s K K

s K d d K

s K c c K

= ⇒ =

+ = ⇒ = − = − = −

+ = ⇒ = − = −

 

 

Thus 

 

( )
( )

( ) ( ) ( ) ( ) ( ) ( )

( )
2

222 2

2 1 4

3/5 3/5 6/5 3/5 3/5 6/53

2 52 5 1 2
s s

s s
X s

s s s ss s s s
= + + +

− + − − + −
= = + = +

+ ++ + + +�����

 

( ) ( )
( ) ( ) ( )

( ) ( ) ( )

( )

2

1 1 1

2

2 1 4

1 1

2 2

( )

3/5 3/5 6 /5

2 5

3/5 3/5 6 /5

1 2

s s

G s

s
x t X s

s s s

s

s s

− − −

= + + +

− −

 
− + −   

= = +       + +   
 

 
 − + − 
 = + 
 + + 
 
 

�����

���������

L L L

L L

 

 

The second term of the last equation can be written according to the completing the 

square rule. Thus we have 1, 2, 3/ 5, 6 / 5.a c dω= = = − = −  Therefore substitute into 

the expression of ( )f t  
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( ) [ ]1

3

5

( ) cos sin

3 6

3 3 35 5
cos2 sin 2 cos2 sin 2

5 2 5 10

at at

t t t t

d ca
G t G s ce t e t

e t e t e t e t

ω ω
ω

− − −

− − − −

=

− 
= = +  

 

  
− − −  

  = − + = − −
 
 
 �������

L

 

Hence  

( ) ( )
( ) ( ) ( )

2

1 1 1

2

2 1 4

3/5 3/5 6/5

2 5

3 3 3
cos2 sin 2

5 5 10

s s

t t

s
x t X s

s s s

e t e t

− − −

= + + +

− −

 
− + −   

= = +       + +   
 

= − −

�����

L L L
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1. Examples of Initial Conditions 
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2. Examples of Impulse Inputs 
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3. Examples of Step Inputs 
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4. Examples of Ramp Inputs 
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