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1. INTRODUCTION AND PRELIMINARIES

Let X and Y be two topological vector spaces. Let K be a nonempty convex subset of X and
F : K ×K → 2Y be a multifunction, where 2A denotes the set of all nonempty subsets of set A.
Let C : K → 2Y be multifunction such that for each x ∈ K, C(x) is a closed convex cone with
intC(x) 6= ∅, where intC(x) denotes the interior of C(x). Then, we consider the generalized
vector equilibrium problem (in short, GVEP) is to find

x̄ ∈ K such that F (x̄, y) * −int C(x̄), for all y ∈ K. (1)

This problem was considered by Ansari et al. [2] and Oettli and Schläger [3] which includes vector
variational inequality and vector equilibrium problems as special cases (see, for example [4–15]
and references therein).

The main object of this paper is to establish an existence result for GVEP by using Fan-Browder
[16,17] type fixed-point theorem due to [1].

A multifunction T : X → 2Y is said to be upper semicontinuous on X if, for each x0 ∈ X and
any open set V in Y containing F (x0), there exists an open neighborhood U of x0 in X such that
F (x) ⊂ V for all x ∈ U .
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Let T : X → 2Y be a multifunction. The graph of T , denoted by G(T ), is

G(T ) = {(x, z) ∈ X × Y : x ∈ X, z ∈ T (x)}.

The inverse T−1 of T is the multifunction from R(T ), range of T , to X defined by

x ∈ T−1(y) if and only if y ∈ T (x).

We shall use the following Fan-Browder type fixed-point theorem due to [1] to prove the main
result of this paper.

Theorem 1.1. Let K be a nonempty convex subset of a Hausdorff topological vector space X.

Let T : K → 2K be multifunction such that

(a) for each x ∈ K, T (x) is nonempty convex subset of K;

(b) for each y ∈ K, T−1(y) contains relatively open subset Oy of K (Oy may be empty for

some y ∈ K) such that
⋃
x∈K Ox = K;

(c) K contains a nonempty subset D0 which is contained in a compact convex subset D1

of K such that the set D =
⋂
x∈D0

Ocx is either empty or compact, where Ocx denotes the

complements of Ox in K.

Then, there exists a point x0 ∈ K such that x0 ∈ T (x0).

2. EXISTENCE RESULTS

Let X and Y be two topological vector spaces and K be a nonempty convex subset of X.
A multifunction F : K × K → 2Y is called Cx-quasiconvex-like if, for all x, y1, y2 ∈ K, and

α ∈ [0, 1], we have either F (x, αy1 + (1 − α)y2) ⊆ F (x, y1) − C(x) or F (x, αy1 + (1 − α)y2) ⊆
F (x, y2)− C(x).

To show the class of Cx-quasiconvex-like multifunctions is nonempty, we give the following
example.

Example 2.1. Let K − [0, 1], C(x) = [0,+∞), for all x ∈ K. We define F : K ×K → 2R by

F (x, y) = [x, y + 1], for all x, y ∈ K.

For all x, y1, y2 ∈ K and 0 ≤ α ≤ 1, we note that

if y1 ≤ y2, then αy1 + (1− α)y2 ≤ y2

and
if y1 > y2, then αy1 + (1− α)y2 ≤ y1.

Therefore, we have for each t ∈ F (x, αy1 + (1− α)y2),

t =
{

(y2 + 1)− [(y2 + 1)− t], y1 ≤ y2,

(y1 + 1)− [(y1 + 1)− t], y1 > y2.

Hence, we have either F (x, αy1 + (1 − α)y2) ⊆ F (x, y1) − C(x) or F (x, αy1 + (1 − α)y2) ⊆
F (x, y2)− C(x). Thus, F is Cx-quasiconvex-like.

Now we are ready to prove the following main result of this paper.

Theorem 2.1. Let K be a nonempty convex subset of a Hausdorff topological vector space X

and Y be a topological vector space. Let F : K ×K → 2Y be a multifunction. Assume that

(i) C : K → 2Y is a multifunction such that for each x ∈ K, C(x) is a closed convex cone

in Y with intC(x) 6= ∅;
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(ii) W : K → 2Y is a multifunction defined as W (x) = Y \ {−int C(x)}, for each x ∈ K such

that the graph of W is closed in K × Y ;

(iii) for each y ∈ K, F (·, y) is upper semicontinuous with compact values on K;

(iv) there exists a multifunction G : K ×K → 2Y such that

(a) for each x ∈ K, G(x, x) * −intC(x),
(b) for each x, y ∈ K, F (x, y) ⊆ −intC(x), implies G(x, y) ⊆ −intC(x),
(c) G is Cx-quasiconvex-like on K;

(v) there exists a subset D0 contained in a nonempty compact convex subset D1 of K such

that for each x ∈ K \D1, there exists y ∈ D0 with F (x, y) ⊆ −intC(x).

Then, the solutions set S = {x ∈ K : F (x, y) * −intC(x), for all y ∈ K} is a nonempty and

compact subset of D1.

Proof. We define Q(y) = {x ∈ K : F (x, y) * −intC(x)}, for all y ∈ K. Then the solution set
S =

⋂
y∈K Q(y). We note that for each y ∈ K, Q(y) is closed.

Indeed, let {xλ}λ∈Λ be a net in Q(y) such that {xλ} converges to x. Then we have F (xλ, y) *
−intC(xλ) for each y ∈ K, that is, there exists zλ ∈ F (xλ, y) such that zλ /∈ −int C(xλ), or
zλ ∈ W (xλ), for all λ ∈ Λ. Let A = {xλ} ∪ {x}. Then A is compact and zλ ∈ F (A, y) which
is compact. Therefore, {zλ} has a convergent subnet with limit z. Without loss of generality,
we may assume that {zλ} converges to z. Then, by the upper semicontinuity of F (·, y), we have
z ∈ F (x, y). Also since W has a closed graph in K × Y , we have z ∈ W (x). Consequently,
z ∈ F (x, y) and z /∈ −intC(x), i.e., F (x, y) * −intC(x). Hence, x ∈ Q(y) and so Q(y) is closed
as claimed.

Now we shall prove that the solution set S is nonempty. Assume to the contrary that S = ∅,
if possible. Then, for each x ∈ K, the set

P (x) = {y ∈ K : x /∈ Q(y)} = {y ∈ K : F (x, y) ⊆ −intC(x)} 6= ∅.

From Assumption (iv)(b), we have, for each x ∈ K,

H(x) = {y ∈ K : G(x, y) ⊆ −intC(x)} ⊃ {y ∈ K : F (x, y) ⊆ − intC(x)} = P (x),

and hence, for each x ∈ K, H(x) is nonempty. Also, for each x ∈ K, H(x) is convex.
To see this, let y1, y2 ∈ H(x), then for each x ∈ K, G(x, y1) ⊆ −intC(x) and G(x, y2) ⊆

−intC(x). Since G is Cx-quasiconvex-like, for all α ∈ [0, 1], we have either

G(x, αy1 + (1− α)y2) ⊆ G(x, y1)− C(x) ⊆ −intC(x)− C(x) ⊆ −intC(x)

or
G(x, αy1 + (1− α)y2) ⊆ G(x, y2)− C(x) ⊆ −intC(x)− C(x) ⊆ −intC(x).

In both cases, we get G(x, αy1 + (1 − α)y2) ⊆ −intC(x). Hence, αy1 + (1 − α)y2 ∈ H(x),
and therefore, H(x) is convex. Thus, H : K → 2K defines a multifunction such that for each
x ∈ K, H(x) is nonempty and convex. Now for each x ∈ K, the set

H−1(y) = {x ∈ K : y ∈ H(x)}
= {x ∈ K : G(x, y) ⊆ −int C(x)}
⊃ {x ∈ K : F (x, y) ⊆ −int C(x)}
= {x ∈ K : F (x, y) * −int C(x)}c

= [Q(y)]c

= Oy,

which is a relatively open set in K. From Assumption (v), for each x ∈ K \ D1, there exists
y ∈ D0 such that F (x, y) ⊆ −intC(x), that is, x /∈ Q(y). This implies that D =

⋂
y∈D0

Ocy =
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Q(y) ⊂ D1. Since Oy = {x ∈ K : F (x, y) ⊆ −intC(x)}P−1(y), we get
⋃
y∈K Oy =⋃

y∈K P
−1(y) = K.

To see this, let x ∈ K. As P (x) 6= ∅, we can choose y ∈ P (x). Hence, x ∈ P−1(y) = Oy. By
Theorem 1.1, there exists a point x̄ ∈ H(x̄), that is , G(x̄, x̄) ⊂ −intC(x̄), which is a contradiction
of Assumption (iv)(a). Hence, the solution set S is nonempty. We conclude the proof by noting
that S =

⋂
y∈K Q(y) being a closed subset of the compact set D =

⋂
y∈D0

Q(y) is compact and
this completes the proof.

Remark 2.1. When Y = R, C(x) = R+, and F and G are single-valued maps from K × K
to R, Theorem 2.1 reduces to Lemma 2.1 in [18].
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