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1. Abstract 
 1.1 
 ةتتابعمتنص على أن توران وردوس  الأنيقة المنسوبةلأنتيجةال

ة متعامدآثيرة حدود أصفار   فيتصلةمدالة ف  التي تتفق معلاغرانج 
  هذهطورنا لقد .٢ تؤول إلى ف في معيار ل]ج ، د[خلال الفترة 

د من  في عدد محدلكنها تتفق ذات طبيعة مماثلة وةتتابعالى ملنتيجة ا
ويتم هذا العمل من ). ج ، د (الفترةواقعة خارج نقاط محددة سلفا و

ج ، [ ، خارج ك، ...،١،٢= ix ،i نقاطالخلال تحديد عدد محدود من 

∏)=س(سوف نستخدم و. ، ولكل منها تعدد م]د
=

−
م

ن

م
ن

سسن
1

 لبناء دالة )(

صفرية متعامدة ومستوفيةثم نحدد اصفارها البسيطة من خلال منهج 
لاغارنج المستوفاة وهرمت المستوفاة آذلك المعتمدة على . قولب

والدوال الصفرية ) س(الاصفار البسيطة تذيل في حاصل الضرب و
الى ف الناتجة تؤول الحدود آثيرةسلسلة يتضح أن .المتعامدة المستوفية
قمنا آذلك . هرمتثابتة في معنى النقاط ال في وآذلك تتفق معها

.  مختلفةعناصر من خلال النظر في المتتابعاتبالتحقيق في سلوك هذه 
آما وضعت دراسة هذه الحدود آثيرة طريقة حساب آذلك تم تصميم 

 ).٥،٥- (في الفترةلرونغ دالة امقارنة ل
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1.2 Abstract in English 

An elegant result due to Erdos and Turan states that the sequence of Lagrange 

interpolants to a continuous function f at the zeros of orthogonal polynomials over an 

interval [c,d] converges to f in L2 norm. We have extended this result in the sense that the 

sequences of similar nature interpolate f at a finite number of pre-assigned points lying 

outside (c,d). This work is carried out by fixing a finite number of nodes xi, i = 1,2,…,k, 

outside [c,d], each with multiplicity mi. We used ( )
1

( ) i
k

n
i

i

W x x x
=

= −∏ to construct 

orthogonal 0-interpolants (OZI) and then determined their simple zeros by the approach 

of Golub. The Lagrange interpolants or Hermite interpolants based on the simple zeros 

are appended with the product of W(x) and the OZI. It is shown that the sequence of 

resulting polynomials converged to f as well as interpolated it at the fixed nodes in the 

sense of Hermite. We have investigated the behavior of these sequences by considering 

different parameters. A method of computing these polynomials is also devised and a 

comparative study is presented for Runge function on [– 5,5]. 
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2. Introduction 
 

Interpolating polynomials play a vital role in the numerical solution of several scientific 

and engineering problems. Nevertheless, they require a carefully designed algorithm to 

avoid excessive accumulation of round-off errors. 

 

Another drawback, the interpolating polynomials suffer from, is that they lack the 

convergence property in general. This phenomenon appears particularly in case of  

several functions having a singularity, e.g., the Runge function 2

1( )
1

f x
x

=
+

 defined on 

[–5,5].  For this example, the sequence of interpolating polynomials does not converge to 

f when constructed at the uniformly distributed points on [–5,5], e.g. see  [8] and 21]. The 

convergence characteristic of interpolating polynomials, however, changes if the nodes 

are the zeros of orthogonal polynomials. Erdös and Turan noticed this particular 

phenomenon in 1937 [15]. They constructed a sequence of polynomial interpolants to a 

given continuous function f in the sense of Lagrange where the nodes were the zeros of 

orthogonal polynomials over an interval [a,b] and showed that such a sequence converges 

to f in L2- norm over [a,b].  

  

2.1. Theme of the project  

In some applications, we may require the members of an approximating sequence to 

interpolate a given function f at a finite number of pre-assigned points. These points may 

lie inside the interval of convergence or in its outer part where f is defined. It is known 

that the sequences of best least squares or uniform polynomial approximants to an 

[ , ]f C c d∈  converges to f. Some modifications of these sequences exist in the literature 

in which additional interpolating nodes within [c,d] are incorporated in each member of 

the sequence and yet its convergence to f is preserved on [c,d], e.g. see, [1], [3], [13] and 

[17]. On the other hand, if we take up the case of Erdos-Turan type of polynomials as 

discussed above, we find that these polynomials interpolate f at the zeros of orthogonal 

polynomials over [c,d] and that the sequence of such polynomials converges to f in the 
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least squares sense over [c,d] [15]. These zeros by default lie within (c,d) [24]. A natural 

question that may be asked is as follows: Can we modify these polynomials by inducting 

additional nodes, simple or multiple, outside the interval (c,d) in such a way that each 

polynomial interpolates f at these nodes without affecting the convergence of the 

sequence to f over [c,d]?  Our project by and large addresses this aspect of approximating 

polynomials. More precisely, we consider the following problem and determine its 

solution along with its computational procedure: 

 

Problem A:  Let :[ , ]f a b →ℜ . Consider an interval [ , ] [ , ]c d a b⊂  with K a finite subset 

of [a,b] \ (c,d). Construct a sequence of polynomials pn such that  

 1) pn interpolates f at the zeros of orthogonal polynomials on [ , ]c d  

 2) {pn} is L2-convergent over [ , ]c d . 

 3) Each pn interpolates f in the sense of Lagrange or Hermite at the points of K. 

 

We also extend our work by considering the points in K as multiple nodes. In 

computational part (cf Chapter 7) we shall see that the approximation by the suggested 

polynomials is improved outside the interval of convergence, i.e., [c,d].  

 

2.2. Literature survey 

There is a wide range of literature on the theoretical and computational aspects of 

polynomials interpolating in the sense of Lagrange or Hermite and their applications in 

physical, engineering and business problems. Gander [16] considered several 

representations of interpolating polynomials, for example, Lagrange, Newton, Hermite 

etc, where each one is characterized by some basis functions. He investigate the 

transformations between the basis functions which map a specific representation to 

another and showed that for this purpose the LU- and the QR-decomposition of the 

Vandermonde matrix play a crucial role. The choice of nodes in the interpolation process 

plays an important role. A variety of problems and approaches related to these topics may 

be seen in every text on approximation theory. The article “A Chronology of 

Interpolation: From Ancient Astronomy to Modern Signal and Image Processing” [20] 
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and the monograph “Orthogonal Polynomials: Computation and Approximation” [17] are 

worth seeing in this regard. 

   

Although a significant literature exists on interpolation at orthogonal zeros where 

convergence has also been discussed, the problem of interpolation beyond the interval of 

convergence has not been discussed thoroughly to the best of our knowledge. A 

remarkable application of this phenomenon may be observed in Gauss-Radau and Gauss-

Lobbato rules [22], [19] where end points of the interval of integration are included 

among the nodes of these quadrature rules. In various other directions on interpolation at 

the zeros of orthogonal polynomials and their convergence, a lot of work is carried out by 

the researchers. The convergence and boundedness of the extended Lagrange 

interpolating operator with additional nodes were studied in the space ,
p
u tL of Sobolev 

type in [7] by Capobianco and Russo. In [11], Demelin and Lubinski investigated mean 

convergence of Lagrange interpolation at the zeros of orthogonal polynomials pn(W2, x) 

for Erdos weights W2 = e-2Q. and provided necessary and sufficient condition for mean 

convergence of Lagrange interpolants for these weights. Demelin et al further discussed 

the mean convergence of Lagrange interpolation for fast decaying even and smooth 

exponential weights on the line [12]. A lot of literature exists alone on the convergence of 

Lagrange interpolation as well. Criscuolo et al has discussed Point-wise simultaneous 

convergence of extended Lagrange interpolation with additional knots in [9]. Criscuolo et 

al also discussed convergence of extended Lagrange interpolation [10]. We also find a 

significant work on the side of applications and computational procedures related to 

interpolation polynomials. For example, in [24], Streltosy proposed the theory of function 

interpolation, based on the use of Chebyshev and Legendre orthogonal polynomials on a 

discrete point set. He provided effective method of solving Fredholm linear integral 

equations of the first and second kind and showed that Legendre polynomials are more 

preferable than Chebyshev polynomials of the first kind for solving Fredholm equations. 

In [14], Deun and Bultheel provide an interpolation algorithm for orthogonal rational 

functions.   
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In the proposed project, we plan to study Problem A via interpolating orthogonal 

polynomials. This type of polynomials appears in our earlier work on constrained least 

squares approximation [1], [3] and extension of Gauss quadrature rules  [2], [4]. We plan 

to discuss this problem initially by including the end point of [c,d] as interpolating nodes 

and then extend our result to the nodes lying outside [c,d]. In addition, we intend to 

explore the possibility of considering these nodes with multiple order. We shall also 

design some algorithm for the computation of our proposed interpolants. For this, we 

plan to use a modified form of 3-term recurrence relation [23] for the computation of 

interpolating orthogonal polynomials. In order to determine the zeros of these orthogonal 

polynomials, we shall compute eigenvalues of the Jacobi matrix related to 

abovementioned 3-term recurrence relation. This technique, originally proposed by 

Galoub and Welsch, is considered very effective and stable in the evaluation of zeros of 

orthogonal polynomials [18]. 

 

2.3. Organization of report 

The distribution of material in this report is as follows:  

We provided a review of  some fundamentals of approximation theory that mainly deal 

with interpolation, orthogonal polynomials, L2-approximation, and the Erdös-Turan 

Theorem in the next chapter. A review of the notions of 0-interpolants and orthogonal 0-

interpolants is given in Chapter 4. Here, the sequences of orthogonal 0-interpolants and 

their convergence are also discussed. The material provided in rest of the chapters is a 

core of the report. The Erdos-Turan type result by considering additional interpolation 

only at the end points of [c,d], the interval of convergence, is discussed in Chapter 5. We 

referred it to as Problem I. It is followed by Problem II where a finite number of simple 

additional nodes are considered outside the interval of convergence. In Chapter 6, we 

carried out an extension of Problems I and II for multiple nodes lying outside the interval 

(c,d) and established convergence result. Chapter 7 deals with the computational aspects 

for determining the required interpolating polynomial. We also explained the measure of 

various errors between the function and the polynomial. In Chapter 8, we devised 

algorithm for computing the polynomials. The computational procedure is applied to 
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specific functions in the MATLAB environment and simulation results are given along 

with corresponding graphs. Some concluding remarks are given in Chapter 9. 
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3. Some Fundamentals Relevant to Erdös-Turan Theorem  
 

We discuss some basic concepts of approximation theory in the context of Erdös-Turan 

Theorem in this chapter.  These concepts or their modifications will be required in our 

main work. The material discussed here may be found in the standard texts and current 

literature on approximation theory and numerical analysis [4], [5], [6], [15], [18], [21], 

[23].  

  

3.1 Nomenclature 

We list some standard notations frequently used in current and later chapters: 

   

[ , ],

a) ( ) :  non-negative  weight function continuous on [ , ]

b) , : ( ) ( ) ( )

c) : ,

d) :  Class of all polynomials of degree
e) [ , ] : Class of all continuous real valued functio

ω

ω ω

ω

ω

π

=

=

=

= ≤
=

∫
d

c d
c

n

x c d

f g f x g x x dx

f f f

n
C c d

( )

(3.1)
ns on [ , ]

f) ., , :  th degree Lagrange interpolant to a function at 
the set  consisting of ( 1) distinct points 

⎫
⎪
⎪
⎪
⎪
⎪
⎪⎪
⎬
⎪
⎪
⎪=
⎪

+ ⎪
⎪
⎪⎭

n

c d
L U g n g

U n

 

3.2 Interpolation problem 

The polynomial interpolation problem is to determine a polynomial p of minimal degree 

where p or its derivative(s) assumes the given values at a finite number of points. In fact, 

it deals with finite data: { }( , ) : 0,1, ,= …i ix y i k  where the second coordinates yi’s may 

be related to a real valued function f under consideration, i.e., 

either ( )( ) or ( )= = j
i i i iy f x y f x . We classify the interpolation problem into two types: 

Type I: Lagrange  interpolation problem when all the first coordinates xi’s in the data are 

distinct. 

Type II: Hermite interpolation problem when at least one of the first coordinates xi’s in 

the data is repeated. 
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3.3 Lagrange interpolation problem (solution) 

In this case, the first coordinates xi’s of (k + 1) data points are distinct. We set  

{ }0 1, , ,= … kA x x x .          (3.2) 

The resultant polynomial p is of degree k and is denoted by (., , ) (cf (3.1)-f).kL A f  Thus, 

we have 

( , , ) ( ), 0,1, 2,...,= =k i iL x A f f x i k .        

Note that (., , ) π∈k kL A f . It is uniquely determined by k +1 interpolation conditions. 

Some explicit representations of (., , )kL A f are as follows: 

a. Set  

( ) ( )
α

α
∈

= −∏A
A

W x x          (3.3)  

then 

( )( , , ) ( )
( ) ( )α

α
α α∈

=
′−∑ A

k
A A

W xL x A f f
x W

                  (3.4) 

b. Set 

0

( )
( )

( )

k
j

i
j i j
j i

x x
l x

x x=
≠

−
=

−∏ , i = 0,1,2,…,k,        (3.5) 

then 

0
( , , ) ( ) ( )

=

=∑
k

k i i
i

L x A f f x l x .                                                                              (3.6) 

The k + 1 polynomials il ’s defined in (3.5) are known as the fundamental polynomials of 

the Lagrange interpolant at the nodes 0 1 2, , , ,… kx x x x . It may be noted that 

, 0,1,..,i kl i kπ∈ = , and that ( )i j ijl x δ= . From (3.3)-(3.6), we note that  

( )( )
( ) ( )

=
′−

A
i

i A i

W xl x
x x W x

           (3.7) 
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c. If we denote the divided difference1 [8], [21] of order j by 0 1[ , ,..., ]jf x x x  then based 

on the Newton’s interpolation formula [8], [21], we have another representation: 
1

0 0 1
1 0

( , , ) [ ] [ , ,..., ] ( )
−

= =

= + −∑ ∏
jk

k j i
j i

L x A f f x f x x x x x      (3.8) 

 

3.4 Hermite interpolation problem (solution) 

Here we discuss the case when one or more xi’s in the data { }( , ) : 0,1, ,= …i ix y i k  are 

not distinct. In particular, we consider a situation when an xi appears mi times with 1≥im  

in the data. In such a case, we need the interpolation polynomial p to 

satisfy ( ) ( )( ) ( ), 0,1,2,..., 1j j
i i ip x f x j m= = − . In order to determine the desired 

interpolant, we identify each of the distinct xi’s and re-label them as follows: if r is the 

number of distinct xi’s, we set { }1 2, , ,= … rU u u u where each ju correspond to one of the 

distinct first coordinates repeating my-times in the data. The resulting polynomial p is of 

degree S(r) – 1 with 
1

( )
k

j
j

S r m
=

=∑ , and will be denoted by ( ) 1, (., , )−S r kH U f .  

Thus, we have ( ) ( )
( ) 1, ( , , ) ( ), 0,1, 2,..., ; 0,1, 2,..., 1.j j

S r k i i jH u U f f u i k j m− = = = −  Here we 

say that ( ) 1,S r kH −  interpolates f at ui’s in the sense of Hermite. 

 

Remark 3.1. The Hermite interpolants may be computed by Newton’s interpolation 

formula (cf (3.8)). Here, one has to take care of divided difference of repeated nodes2 

[21]. 

 

 

  
                                                 
1 Note that for the points 0 1, ,..., kx x x , the 0-order divided difference [ ]if x is defined as 

[ ]= ( )i if x f x , i = 0,1,…,k; and the mth-order divided difference is by the recursive formula 

0 1 1 1 2
0 1

0

[ , ,..., ] [ , ..., ][ , ,..., ] m m
m

m

f x x x f x x xf x x x
x x
− −

=
−

, m = 1, 2, …,j 

2 If 0 1 ...= = = =kx x x u then ( )
0 1

1 times

[ , ,..., ] [ , ,..., ] ( ) / !
+

= =��	�

k

k
k

f x x x f u u u f u k  
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3.5 Existence and uniqueness of best approximants [21] 

i. Best approximant. Let A B⊂ and ( , . )B  be  a normed linear space3. Let b B∈ . We 

say that *a A∈  is a best approximant of b from A if * ,a b a b a A− ≤ − ∀ ∈ .   

ii. Existence of best approximant. Let A be a finite dimensional linear space in a 

normed linear space ( , . )B . Then for every b B∈ , there exists an element of A that is a 

best approximant of b from A .  

iii. Uniqueness of best approximant. Let A be a convex set in a normed linear space 

( , . )B   whose norm is strictly convex. Then for every b B∈ , there is at most one best 

approximant of b from A. 

iv. Application of convexity and strict convexity. Every linear space is convex. Also, 

L2-norm on C[a,b] is strictly convex. 

 

3.6 L2-approximation problem 

An L2-approximation problem over nπ for an [ , ]∈f C a b  with respect to a weight 

function, say ω , may be posed as follows: 

min
ωπ∈

−
np

f p .                       (3.9) 

The problem (3.9) has a unique solution, say np∗ , since nπ is a finite dimensional linear 

space and the norm ω  on [ , ]C a b  is strictly convex (See ii and iii, section 3.5). 

 

3.7 Mean squared convergence 

Let  np∗  be a solution of the problem given by (3.9). If [ , ]f C a b∈  then 

lim 0.
ω

∗

→∞
− =nn

p f          (3.10) 

This result is a consequence of the Weierstrass approximation theorem with the following 

heuristic argument: 

(i) { }
0ω

∞
∗

=
−n

n
p f is a decreasing sequence of nonnegative numbers since 1n nπ π +⊂ . 

                                                 
3 The norm || . ||  is a real-valued function defined on B which satisfies the following properties: 
(i) 0x >  unless x = 0; (ii)  where  is a scalar; (iii) x x x y x yλ λ λ= + ≤ + . 
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(ii) We can have *
Np π∈  for some N such that * .p f ε

∞
− <  Then 

*
Np f p f ε∗

∞ ∞
− < − < .  

(iii) (3.10) is an outcome of (i) and (ii). 

 

3.8 Orthogonal polynomials and their role in L2-approximation 

We say that two polynomials p and q are orthogonal with respect to a weight function ω  

over an interval [a,b] if , : ( ) ( ) ( ) 0.
ω

ω= =∫
b

a

p q p x q x x dx  Orthogonal polynomials are 

mutually linearly independent and they play a vital role in the computation of L2-

approximants np∗ . In particular, if 0 1" , ,..., "ϕ ϕ ϕn  is an orthogonal basis of π n ,  then 

0

,
( ) ( )

,
ω

ω

ϕ
ϕ

ϕ ϕ
∗

=

=∑
n

i
n i

i i i

f
p x x          (3.11) 

 

3.9  3-Term recurrence relation for orthogonal polynomials[…] 

An orthogonal basis 0 1" , ,..., " of n nϕ ϕ ϕ π , as required in (3.11) may be determined by the 

following method (known as 3-Term recurrence relation): 

1 1( ) ( ) ( ) ( ), 1, 2,i i i i ix x x x i+ −= − − = …ϕ α ϕ β ϕ                   (3.12) 

with  

0 1 0 0 0 0( ) 1, ( ) ; ,
w

x x x≡ = − =ϕ ϕ α α ϕ ϕ          (3.13) 

The recursion coefficients in (3.12) according to the Steiltjes procedure [17] are given by 

      

1 1

,
, 1, 2,

,

,
, 1, 2,

,− −

⎫
= = ⎪

⎪
⎬
⎪= = ⎪
⎭

…

…

i i
i

i i

i i
i

i i

x
i

i

ω

ω

ω

ω

ϕ ϕ
α

ϕ ϕ

ϕ ϕ
β

ϕ ϕ

.       (3.14) 
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3.10 Orthogonal zeros and their evaluation 

It may be noted that the orthogonal polynomial nϕ  discussed above has n distinct zeros in 

the open interval (a,b) [21]. These zeros are in fact eigenvalues of the Jacobi matrix [18]. 

0 1

1 1 2

2 2

1

1 1

0 0 . 0

0 . 0

0 . .
0 0 0

. . .

0 0 . 0

α β

β α β

β α

β

β α
−

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

%
% % %

% %

n

n

n n

J     (3.15) 

 

3.11  Erdös-Turan Theorem based on orthogonal zeros  

Here, we discuss an L2-convergence process related to the Lagrange interpolants (cf 

(Section 3.3)) at the zeros of orthogonal polynomials. This is in fact the underlying theme 

of our project. A remarkable result based on this type of intrpolants is due to Erdös and 

Turan [15] which may stated as 

 
Theorem 3.1.[15] Let 0 1 2, , ,P P P …be a system of polynomials which are orthogonal on a 

finite closed interval [c,d] with respect to a weight function ω . Suppose that 

{ }1 1 2 1: , , ,+ += …n nZ z z z is the set of n +1 zeros of 1nP + . Consider a real valued function f 

with  1 Dom( )+ ⊂nZ f and let 1(., , )+n nL Z f  be the Lagrange interpolant of degree ≤n to f 

at the zeros of 1nP + . If [ , ]∈f C c d , then 

( )2
1lim ( , , ) ( ) 0+→∞

− =∫
d

n nn
c

L x Z f f x dx .      (3.16) 

 
In Theorem 3.1, we note that the interpolating nodes being the zeros of orthogonal 

polynomial are distinct and located within the interval (c, d) [Powell]. Moreover, these 

nodes are readily available as eigenvalues of the matrix (3.15) 
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4. Orthogonal 0-Interpolants 

 
In order to include additional nodes outside the interval of convergence in Erdos-Turan 

Theorem (cf Theorem 3.1), we introduce a system of orthogonal zero-interpolants. For 

formal explanation, first we shall define the notion of 0-interpolants and then describe the 

relevant constrained minimization problem. On the same lines, we shall discuss the 

notion of orthogonal Hermite zero-interpolants and its corresponding minimization 

problem. [6] 

 

4.1.  Zero-interpolants 

We shall say that a real-valued function g is a zero-interpolant at a finite set 

{ }0 1, , ,… kx x x  if ( ) 0, 0,1,...,ig x i k= = , i.e.,  g interpolates the zero-function at the 

nodes xi, i = 0,1,…,k. 

 

Notations: For a finite set A with k +1 elements, i.e., 1= +A k , we shall use the 

following notations:  

{ }, ( ) : :  is a zero-interpolant at , 0.π π += ∈ ≥n k n kA p p A n     (4.1) 

( ) { }[ , ], , : [ , ] : Dom( ) and  is a zero-interpolant at = ∈ ⊂C c d A k g C c d A g g A  (4.2) 

 

Remark 4.1.  A may or may not be a subset of the interval [c,d] in  (4.2). 

 

Setting , ( ) : ( )
α

α
∈

= −∏A k
A

W x x ,  we describe some properties of , ( )π n k A  in the following 

lemma: 

Lemma 4.1 [1]. If 1= +A k , then the class of algebraic polynomials , ( )π n k A  has the 

following properties:  

(a) , ( )π n k A  is an n +1 dimensional subspace of 1π + +n k , which is generated by the 

polynomials , , ,, , ,… n
A k A k A kW xW x W . 

(b)  Every polynomial p in , ( )π n k A  is of the form 
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,= A kp qW           (4.3) 

for some nq π∈ .  

(c)  ,0
( )π

∞

=
∪ n kn

A  is uniformly dense in ( )[ , ], ,C c d A k . 

Proof.  The parts (a) and (b) of the theorem follow from the structure of , ( )π n k A . The 

proof of (c) may be found in [1]. 

 

4.2.  Orthogonal 0-interpolants at a finite set A 

Note that ( )1 ,π +n A k  being an (n + 2)- dimensional space has a basis that consists of 
monic orthogonal polynomials with respect to weight function ( )xω  over a given 
interval [c,d] [1]. These orthogonal polynomials which we shall denote by , ( )φ j k x  , j = 
0,1,2,…, are determined by the 3-term recurrence relation by making some appropriate 
changes in (3.12)-(3.14) as follows: 
 
i. Replace ( )ϕ j x  by  , ( )φ j k x  , j = 0,1,2,… 
ii. Replace 0 ( ) 1ϕ =x  by 0, ,( ) ( )φ =k A kx W x . 
 
Note that A is a part of the set of zeros of every polynomial in , ( )π n k A . Thus, the 
orthogonal polynomial ,φ j k , j = 0,1,2…,n +1, has a unique decomposition (cf (4.3)) 
 

, , ,( ) ( ) ( )φ =j k j k A kx p x W x         (4.4) 
 
for some , π∈j k jp .  
 
Orthogonal Zero-Interpolants: We refer to the polynomials ,φ j k , j = 0,1,2…, as 
orthogonal 0-interpolants at the set A with respect to ω . 
 
Remark 4.2. In the notation of ((3.1)-b) it follows that for i j≠ , we have 

2
,

, , , , , , , ,[ , ], [ , ], [ , ],
0 , , ,

ω ω ω
φ φ= = =

A k
i k j k A k i k A k j k i k j kc d c d c d W

W p W p p p . Therefore, ,j kp ,    

j = 0,1,2…,n +1, are monic orthogonal polynomials with respect to the weight function 
2( ) ( )ω Ax W x  over [c,d], and thus, each ,j kp has j real distinct zeros lying in the open 

interval (c,d) [1]. 
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4.3. Constrained L2-approximation problem with simple nodes  

Let 1 2 1{ , ,..., }+= kA x x x  be a subset of real numbers. Let :[ , ]→ℜf c d  be such that 

2 ( ) ( ) < ∞∫
d

c

f x w x dx  and that Dom ( )⊂A f . Constrained L2-approximation problem 

over Nπ  (where N ≥  n+k  with 0n ≥ ) may be posed as follows: 

[ , ],

( ) ( )
0,1..,

min
N

i i

c dp
p x f x

i k

f p
∈
=

=

−
ωπ

 .         (4.5) 

Solution. If n = 0, then (., , )kL A f , the Lagrange interpolating polynomial to f at the       

k + 1 distinct nodes ix , 0,1,2,...,i k= , provides an optimal solution of the problem (4.5). 

In order to solve (4.5) when n > 0, we convert it into an unconstrained minimization 

problem by modifying the given function f and merging the interpolating constrains in the 

feasible set [1]. Thus, an equivalent form of (4.5) is given by  

, ( )
min

ωπ∈
−

n k
Lp A

f p          (4.6)  

where 

(., , )= −L kf f L A f .         (4.7) 

The solution, , ( )n n k A∗ ∈φ π , of the problem (4.6) is uniquely determined by 

, [ , ],*
, ,

0 , , [ , ],

,
( ) ( )

,
ω

ω

φ
φ φ

φ φ=

=∑
n i k L c d

n k i k
i i k i k c d

f
x x        (4.8) 

where 0, 1, ,, ,...,φ φ φk k n k form an orthogonal basis of  , ( )π n k A .  

 

Convergence [1]. If  , , ( )φ π∗ ∈n k n k A  is the solution of problem (4.6), then (cf (4.7)-(4.8)) 

,lim 0.L n kn
f

ω
φ∗

→∞
− =          (4.9) 

provided that [ , ]f C a b∈ . 

 

4.4. Orthogonal Hermite 0-interpolants at a finite set A 

In Section 4.1, we discussed the notion of  zero-interpolant at simple nodes. Now we 

extend this concept to multiple nodes. For this, we consider { }1 2 1, , , ku u u +…  where each 
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distinct node ui has multiplicity mi . We shall say that a real-valued function g is a 

Hermite zero-interpolant at a finite set { }1 2 1, , , ku u u +…  if ( ) ( ) 0, 1, 2,..., 1j
ig u i k= = + ; 

0,1,..., 1= −ij m , i.e.,  g interpolates the zero-function and its first (mi – 1) derivatives at 

each node ui, i = 0,1,…,k. In order to define the orthogonal Hermite 0-interpolants, we 

introduce additional notations:  

{ } 0
0

( ) : ;   ( ) :
k

k
i ii

i
s k m S k m

=
=

= =∑        (4.10) 

( )
0

( ) : ( )
=

= −∏ j
k

m
s k j

j

W x x u .        (4.11) 

 
On the lines of Section 4.2, we consider (n +2)-dimensional subspace 1, ( ) ( )π +n s k A  and its 

orthogonal basis, say { } 1

, ( ) 0
φ

+

=

n

j s k j
 with respect to a weight function ω  over the interval 

[ , ]c d . As noticed in Lemma 4.1, we briefly state some properties relevant to the 
orthogonal polynomials , ( )φ j s k : 
1.  1, ( ) 1, ( ) ( )( ) ( ) ( )φ + +=n s k n s k s kx p x W x  for some 1, ( ) 1( ) π+ +∈n s k np x  

2. { }1, ( ) 1 2 1: , , ,+ += …n s k nZ z z z  will denote the set of (n +1) distinct zeros of the factor 

polynomial 1, ( )+n s kp . These zeros lie in [ , ]c d . 

3. Each orthogonal polynomial , ( )φ j s k  has k +1 zeros iu each with multiplicity 

, 1, 2 , 1= +…im i k . These are in addition to (j +1) distinct zeros of 1, ( )+j s kp . 

 

Orthogonal Hermite 0-Interpolants: The polynomials , ( )φ j s k , j = 0,1,2…, will be 

referred to as orthogonal Hermite 0-interpolants at the set { }1 2 1, , , ku u u +…  with respect to 
ω  where each node ui has multiplicity mi. 
 
Remark 4.3. We also notice that for i j≠ , 

 2 2
( ) ( )

, ( ) , ( ) , ( ) ( ) , ( ) ( ) , ( ) , ( )[ , ], [ , ], [ , ], .
0 , , ,

s k s k
i s k j s k i s k s k j s k s k i s k j s kc d c d W c d W

p W p W p p= = =
ω ω ω

φ φ   

Therefore, , ( )j s kp , j = 0,1,2…,n+1, are monic orthogonal polynomials with respect to 

weight function 2
( )( ) ( )ω s kx W x  over [c,d], and thus, each , ( )j s kp  has j real distinct zeros 

lying in the open interval (c,d) [3]. 
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4.5. Constrained L2-approximation problem with multiple nodes 

The constrained L2-approximation problem as discussed in Section 4.3 can be 

reformulated for multiple nodes as follows: 

Let 1 2 1{ , ,..., }+= kU u u u  be a subset of real numbers where each node xi has multiplicity 

mi . Let :[ , ]→ℜf c d  be such that 2 ( ) ( ) < ∞∫
d

c

f x w x dx  and Dom ( )⊂U f . Then a 

constrained L2-approximation problem over Nπ  (where N ≥  n + S(k) – 1   with 0n ≥ ) 

may be stated as follows: 

( ) ( )

[ , ]

( ) ( )
0,1..,
0,1, ,

min
ωπ∈

=
=
=

−

…

N
j j

i i

i

c dp

p x f x
i k
j m

f p         (4.12) 

 

Remark 4.4. Problem (4.12) can be resolved on the lines of the method given for 

problem (4.5). Here, we modify f as follows (cf (4.7)): 

( ) 1,( ) : ( ) ( , , ).−= −H S k kf x f x H x U f        (4.13)  

If N = S(k) + n – 1. Then an equivalent form of (4.6) can be expressed as 

, ( ) ( )
min

ωπ∈
−

n s k
Hp A

f p ,         (4.14) 

where 2
, ( ) ( ) ( ) ( ) ( )( ) , , , , n

n s k s k s k s k s kπ A W xW x W x W= …  with ( )s kW  given by (4.11). The 

solution of (4.14) is similar to that of the problem (4.6) by considering the orthogonal 

basis of , ( ) ( )π n s k A , say  { }, ( ) 0
φ

=

n

j s k j
 , as discussed in Section 4.2. 

 

Convergence [3]. If  *
, ( ) , ( ) ( )φ π∈n s k n s k A  is a solution of problem (4.14), then 

*
, ( )lim 0.H n s kn

f
ω

φ
→∞

− =         (4.15) 

provided that ( *)[ , ]∈ kf C a b  with ( )1 1
: max 1∗

≤ ≤ +
= −ii k

k m . 

The details of the proof for (4.15) may be found in [3]. 



 23

5.  Extension of Erdös-Turan Theorem (Simple Nodes) 
 
This chapter deals with extensions of Erdös-Turan Theorem (cf Theorem 3.1) where the 

underlying interval is [c,d] and additional nodes lying outside the open interval (c,d) are 

simple. Here, we address the following problems: 

 

Problem I:  Let :[ , ]→ℜf c d . Construct a sequence of polynomials Pn such that  

1. Pn interpolates f at the zeros of orthogonal polynomials with respect to 

appropriate weight function on [ , ]c d . 

2. {Pn} is L2-convergent to f over [ , ]c d . 

3. Each Pn interpolates f in the sense of Lagrange at the end point(s) of interval 

[c,d]. 

 

Problem II:  Let :[ , ]f a b →ℜ . Consider an interval [ , ] [ , ]c d a b⊂  with A a finite subset 

of [a,b] \ (c,d). Construct a sequence of polynomials Rn such that  

1. Rn interpolates f at the zeros of orthogonal polynomials with respect to 

appropriate weight function on [ , ]c d . 

2. {Rn} is L2-convergent to f over [ , ]c d . 

3. Each Rn interpolates f in the sense of Lagrange at the points of A. 

 

The solution of both problems depends on appropriate orthogonal 0-interpolants which 

replace the orthogonal system of polynomials considered in Erdös-Turan Theorem. Here, 

we modify the given function f to a 0-interpolant at the points c and d in case of Problem 

I and at the given set A in case of Problem II,  and then construct a sequence of desired 

interpolants.    

 
5.1. System of orthogonal 0-interpolants at A and fundamental polynomials 

Recall that { } 1

, 0
φ

+

=

n

j k j
 as described in Section 4.2 is an orthogonal basis of the space 

( ) 1
1, , , ,: , , ,π +
+ = … n

n k A k A k A kA W xW x W  with ( ), ( ) :A k
A

W x x
∈

= −∏
α

α . We shall regard 
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,φ j k , j = 0,1,2,….. , as the system of orthogonal 0-interpolants at A. From (4.4) and 

Remark 4.2, we note that 1, , 1,( ) ( ) ( )φ + +=n k A k n kx W x p x  where 1,+n kp  has   n + 1 distinct 

zeros in (c,d). We shall write these zeros in the set notation form as  

{ }1, 1 2 1: , , ,+ += …n k nZ z z z .        (5.1) 

Next, we consider the polynomials , 0,1, 2, , 1= +…A iW l i n , 1π +∈i nl  are the fundamental 

polynomials (cf (3.5)) of the Lagrange interpolant based on the points of  1,+n kZ . We 

shall require following Lemma in sequel: 

 
Lemma 5.1.  The polynomials , 1, 2, , 1= +…A iW l i n , are mutually orthogonal with 

respect to the weight function ω  on the interval [c,d]. 

Proof.  First, we note that   

1

1

( )( ) , 0,1, 2, , 1
( ) ( )

+

+

= = +
′−

…n
i

i n i

p xl x i n
x z p z

        

Thus, for ≠i j , i, j = 1,2,…,n +1, we have after reshuffling of some factors 

1,
1,[ , ],

1, 1,

( ) ( )1, ( ) ( )
( ) ( ) ( )( )ω

φ ω+
+

+ +

=
′ ′ − −∫

d
n k A

A i A i n kc d
n k i n k j i jc

p x W x
W l W l x x dx

p z p z x z x z
. (5.2) 

If ,i j≠  then the expression 1, ( ) ( )
( )( )

+

− −
n k A

i j

p x W x
x z x z

 in (5.2) reduces to a polynomial of class 

1, ( )π −n k A .  Noting that 1,φ +n k  is orthogonal to 1, ( )π −n k A  with respect to ω  on the interval 

[c,d], the right side of (5.2) vanishes. This completes the proof. 

 

5.2. Interpolants with additional nodes outside (c,d)  

In order to modify Erdos-Turan type interpolants (cf Theorem 3.1) that may absorb a 

finite number of additional nodes lying outside (c,d), we proceed as follows: 

i. Let A be a finite set of real numbers such that A and (c,d) are disjoint. 

ii. Define a class of real valued functions [ , ]AK c d  in which any function f has the 

following attributes: 

a. [ , ]∈f C c d , 

b. Dom (f) = [a,b] with ( , ) [ , ]A c d a b∪ ⊂ , 
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c. f is differentiable at the points of A 

iii. Following the notation of (4.7), set 

 1( ) ( ) ( , , )−= −A Af x f x L x A f        (5.3) 

Now we are in position to provide an explicit form of the desired interpolants. 

Lemma 5.2. For an [ , ]∈ Af K c d , set  

( ) , ,
( )

( ) :
( )lim , .
( )→

⎧ ∉⎪⎪= ⎨
⎪ ∈
⎪⎩

A

A

A
W

A

t x
A

f x x A
W x

f x
f t x A

W t

       (5.4) 

Then the polynomial , 1( , , ) π + −∈n A n Ax A fL defined as 

1, 1( , , ) : ( , , ) ( ) ( , , )+−= +
AA n n Wn A Ax A f L x A f W x L x Z fL     (5.5) 

interpolates f at the zeros of the orthogonal polynomial 1, 1,( ) ( ) ( )φ + +=n k A n kx W x p x (cf 

Section 5.1). 

 

Proof. Note that 1,+∪ n AA Z is the set of all zeros of 1,φ +n k  whereas 1,+n AZ is the set of the 

zeros of 1,+n kp (cf (5.1)). Moreover, 1 and +nA Z  are disjoint sets. If ∈v A , then 

1( , , ) ( )− =AL v A f f v  along with ( ) 0=AW v . Thus, , ( , , ) : ( )=n A v A f f vL . On the other 

hand, if 1, +∈ n Av Z , then , 1( , , ) ( , , ) ( ) ( )−= +
AA Wn A Av A f L v A f W v f vL (cf (5.5)). Using 

(5.3)-(5.4), we conclude that , ( , , ) ( )=n A v A f f vL . Thus, the polynomial , (., , )n A A fL  

interpolates f at the zeros of 1,φ +n k . 

 

5.3. Extension I: Inclusion of end points of [c,d] as additional nodes 

As a first step towards extension of Erdös-Turan Theorem, we start with a simple 

situation where the end-points c and d appear as simple nodes in the modified 

interpolants (cf (5.5)). In such a case, { },=A c d and the corresponding interpolant can be 

written from (5.5) as  

,2 1 1( , , ) : ( , , ) ( ) ( , , )+= +
An A n n Wx A f L x A f W x L x Z fL     (5.6) 
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Our first result is as follows: 

Theorem 5.1. Let ,φ j k , j = 0,1,2,….. , be the system of orthogonal 0-interpolants at 

A={c,d} with respect to ω  on the interval [c,d]. If [ , ]∈ Af K c d  then  

,2lim (., , ) 0
ω→∞

− =nn
A f fL .        (5.7) 

where ,2 (., , )n A fL is the Lagrange interpolant to f at the zeros  of 1,2φ +n  as given in (5.6) 
 

Proof. Using (5.6) with a slight reshuffling and then considering 
AWf from (5.4), we get 

( ){ },2 1 1

1

(., , ) (., , ) / (., , )

 (., , )

+

+

⎡ ⎤− = − −⎣ ⎦
⎡ ⎤= −⎣ ⎦

A

A A

n A A n n W

A W n n W

f A f W f L A f W L Z f

W f L Z f

L
   (5.8) 

Since [ , ]∈
AWf C c d , there exists the best uniform approximant π∈n nQ  to 

AWf from the 

class nπ  and  [21],  

[ , ],
lim 0

AW n c dn
f Q

∞→∞
− = .        (5.9) 

Thus, 

[ , ],
lim 0.

AW n c dn
f Q

→∞
− =

ω
        (5.10) 

By triangle inequality, (5.8) can be expressed as  

1 [ , ],

1[ , ], [ , ],

(., , )

(., , ) .

ω

ω ω

+

+

⎡ ⎤−⎣ ⎦

⎡ ⎤ ⎡ ⎤≤ − + −⎣ ⎦ ⎣ ⎦

A A

A A

A W n n W c d

A W n A n n n Wc d c d

W f L Z f

W f Q W Q L Z f
    (5.11) 

Since ( )AW x  being a quadratic polynomial is bounded on [c,d], it follows from (5.10) 

that 

[ , ],
0 as 

ω
⎡ ⎤− → →∞⎣ ⎦AA W n c d

W f Q n .       (5.12) 

Note that 1(., , )+=n n n nQ L Z Q  and that Ln is a linear operator. Therefore, the second term 

on the right side of (5.11) can be written as 

1 [ , ],
(., , )

ω+⎡ ⎤−⎣ ⎦AA n n n W c d
W Q L Z f = 1 [ , ],

(., , )
ω+ −

AA n n n W c d
W L Z Q f .   (5.13) 

Expanding Ln in terms of its fundamental polynomials, we have  
1

1
1

( ) ( , , ) ( )( ) ( ) ( )
+

+
=

− = −∑A A

n

A n n n W n W i A i
i

W x L x Z Q f Q f z W x l x   
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Hence,  
212

1 [ , ],
1 [ , ],

(., , ) ( )( )
ω

ω

+

+
=

− = −∑A A

n

A n n n W n W i A ic d
i c d

W L Z Q f Q f z W l .   (5.14) 

Next, using the orthogonality of , 1, 2, , 1= +…A iW l i n  (cf Lemma 5.1), we have 

( ) [ ]

21

1 [ , ],

1 2 2

1

( )( )

( ) ( ) ( ) ( ) ( )

ω

ω

+

=

+

=

−

= −

∑

∑ ∫

A

A

n

n W i A i
i c d

dn

n i W i A i
i c

Q f z W l

Q z f z W x l x x dx

     (5.15) 

Since the points ( , ), 1, 2, , 1∈ = +…iz c d i n  and −
An WQ f is continuous on [c,d], the right 

side of the above equation can be estimated as  

( ) [ ]

[ ]

1 2 2

1

12 2

[ , ],
1

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) .

ω

ω

+

=

+

∞
=

−

≤ −

∑ ∫

∑∫

A

A

dn

n i W i A i
i c

dn

n W A ic d
i c

Q z f z W x l x x dx

Q f W x l x x dx
      (5.16) 

Noting that 
1

1
( )

+

=
∑
n

i
i

l x =1 [8] and consequently, 
21

1
( ) 1

n

i
i

l x
+

=

⎡ ⎤
=⎢ ⎥

⎣ ⎦
∑ , we have 

[ ]

[ ]

[ ]

21
2 2

1

21

1

1
22

1

1
2

1

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

d d n

A A i
ic c

d n

A i
ic

d n

A i
ic

dn

A i
i c

W x x dx W x l x x dx

W x l x x dx

W x l x x dx

W x l x x dx

+

=

+

=

+

=

+

=

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

=

=

∑∫ ∫

∑∫

∑∫

∑∫

ω ω

ω

ω

ω

     (5.17) 

where the second last expression is due to the orthogonality of the polynomials 

( ) ( ), 1, 2, , 1A iW x l x i n= +…  (cf Lemma 5.1). Combining (5.13)-(5.17), we arrive at 

[ ]2
1 [ , ],[ , ],

(., , ) ( ) ( ) 0 as 
ω

ω+ ∞
⎡ ⎤− ≤ − → →∞⎣ ⎦ ∫A A

d

A n n n W n W Ac dc d
c

W L Z Q f Q f W x x dx n . 

This along with (5.8), (5.11) and (5.12) shows that 
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 ,2 [ , ],
(., , ) 0 as 

ω
− → →∞n c d

f A f nL . 

This completes the proof. 

 

5.4. Extension II: Inclusion of a finite number of points outside (c,d) 

In this section, we consider an extension of Erdös-Turan Theorem on a finite set of real 

numbers lying outside (c,d). More precisely, we consider { }1 2 1, , , += … kA x x x  as a set of 

additional nodes where ( , )∉ix c d . Based on the notations and terminology given in 

(5.1)-(5.5). we state 

 

Theorem 5.2. Let { }1 2 1, , ,  with all ( , )+= ∉… k iA x x x x c d . Let , ,φ j A k , j = 0,1,2,….. , be 

the system of orthogonal 0-interpolants at A with respect to ω  on the interval [c,d]. If 

[ , ]∈ Af K c d  (cf ii, Section 5.2), then the polynomial , 1(., , )+n k A fL  given by (5.5) 

interpolates f at the zeros  of , ,φ j A k . In addition, we have 

[ ], 1 , ,
lim (., , ) 0

ω+→∞
− =n k c dn

A f fL .       (5.17) 

 

Remark 5.1. Theorem 5.2 can be proved exactly by following the steps given in the 

proof of Theorem 5.1 with minor adjustments, and therefore, omitted. In this process, we 

have to replace the linear Lagrange interpolant 1( , , )L x A f  by the kth degree 

interpolant ( , , )kL x A f  in the proof of Theorem 5.1. 
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6. Extension of Erdös-Turan Theorem (Multiple Nodes) 
 

This chapter deals with construction of interpolants that include a finite number of simple 

and/or multiple nodes 1 2, , Dom(f) \ ( , )∈… kx x x c d . Here, we discuss an extended 

version of Problems I and II (cf Chapter 5): 

 

Problem III:  Let :[ , ]f a b →ℜ . Consider an interval [ , ] [ , ]c d a b⊂  with A a finite 

subset of [a,b] \ (c,d) where  each point is considered as a simple or multiple node. Then 

construct a sequence of polynomials hn such that  

1. hn interpolates f at the zeros of orthogonal polynomials with respect to 

appropriate weight function on [ , ]c d . 

2. {hn} is L2-convergent to f over [ , ]c d . 

3. Each hn interpolates f in the sense of Hermite at the points of A. 

 

To determine the solution of this problem, we need some additional notations. For a 

given set of nodes { }1 2 1:  , , , kA x x x += …  lying outside the interval (c,d) where each xi 

has multiplicity mi, we set (cf (4.10)-(4.11)) 

{ } 1

1
( ) : k

i i
s k m +

=
= ,         (6.1) 

1

, ( )
1

( ) : ( )
+

=

= −∏ j
k

m
A s k j

j

W x x x .        (6.2) 

1

1
( ) :

k

i
i

S k m
+

=

=∑           (6.3) 

 

6.1. System of orthogonal Hermite 0-interpolants at A  

As before, we consider the (n + 2)-dimensional subspace 1 , ( )( )π +n A s kW  generated by 

, ( ) ( ), 0,1, , 1,= +…i
A s kx W x i n  and its orthogonal basis, say { } 1

, ( ) 0
φ

+

=

n

j s k j
 with respect to a 

weight function ω  over the interval [ , ]c d . The orthogonal polynomials thus constructed 



 30

will be referred to as the system of orthogonal Hermite 0-interpolants at A. To avoid 

replication (cf Chapter 5), we briefly state some properties of , ( )φ j s k , j =0,12, ,… : 

1. 1, ( ) 1, ( ) , ( )( ) ( ) ( )φ + +=n s k n s k A s kx p x W x  for some 1, ( ) 1( ) π+ +∈n s k np x . 

2.  { }1, ( ) 1 2 1: , , ,+ += …n s k nZ z z z  will denote the set of n +1 distinct zeros of the factor 

polynomial 1, ( )+n s kp . These zeros lie in [ , ]c d . 

3.  Each orthogonal polynomial , ( )φ j s k  has additional k +1 fixed zeros ix each with 

multiplicity , 1, 2 , 1= +…im i k . 

4. If , ( ) , 1, 2, , 1,= +…i s kl i n denote the fundamental polynomials of the Lagrange 

interpolant based on the points of 1, ( )n s kZ + , then an analogue of Lemma 5.1 holds 

for { } 1

, ( ) , ( ) 1

+

=

n

A s k i s k i
W l , i.e.,  

 , ( ) , ( ) , ( ) , ( ) [ , ],
, 0, ; , 1, 2, , 1

ω
= ≠ = +…A s k i s k A s k j s k c d

W l W l i j i j n .   (6.4) 

 

6.2. Modification of function and interpolants 

Define a class of real valued functions , ( )[ , ]A s kK c d  in which any function f has the 

following attributes: 

a. [ , ]∈f C c d , 

b. Dom (f) = [a,b], 

c. f is (mi – 1)-times differentiable at xi i = 1,2,…,k + 1.  

Subject to admissible differentiability conditions on f conditions, the notation 

( ) 1(., , )−S kH A f  will denote the polynomial of degree ( ) 1≤ −S k  satisfying the 

conditions: 
( ) ( )

( ) 1( , , ) ( ), 1, 2, 1; 0,1,− = = + =… …j j
S k i i iH x A f f x i k j m .    (6.5) 

For an , ( )[ , ]∈ A s kf K c d , we define a function on the lines of the one given in (5.4): 

, ( )

, ( )

, ( )

, ( )

, ( )

( )
,

( )
( ) :

( )
lim ,

( )→

⎧
∉⎪

⎪= ⎨
⎪ ∈⎪⎩

A s k

A s k

A s k
W

A s k

t x
A s k

f x
x A

W x
f x

f t
x A

W t

       (6.6) 
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where 

, ( ) ( ) 1( ) : ( ) ( , , )−= −A s k S kf x f x H x A f .       (6.7) 

 

Remark 6.1. The differentiability conditions at the multiple nodes xi’s) as prescribed in 

the definition of , ( )[ , ]A s kK c d  assures the existence of the limit considered in (6.6). 

 

Recall that , ( )A s kW  is a polynomial of degree S(k) (cf (i), Section 6.1) having k distinct 

zeros at { }1 2 1:  , , , += … kA x x x  each with multiplicity mi. Counting all the zeros up to 

their multiplicity, we define an interpolant , ( ) ( , , )n s k x A fH  to f at (S(k) + n + 1) zeros of  

the orthogonal polynomial 1, ( ) ( )φ +n s k x as follows: 

, ( ), ( ) ( ) 1 , ( ) 1, ( )( , , ) : ( , , ) ( ) ( , , )− += +
A s kn s k S k A s k n n s k Wx A f H x A f W x L x Z fH ,        (6.8) 

where n = 0,1,2,… 

 

Remark 6.2. If { } 1
( )

=
= k

i i
s k m  with each mi = 1, then ( ) 1( , , )−S kH x A f  reduces to 

( , , )kL x A f  (see Theorem 5.2). In addition if k =2 with { , }=A c d , it further reduces to 

1( , , )L x A f  (see Theorem 5.1). Therefore, the interpolant , ( ) ( , , )n s k x A fH , in these cases, 

will take the form , 1( , , )+n k x A fL  and ,2 ( , , )n x A fL  respectively. 

 

6.3. Main result 

With the notations and terminology given in the preceding two sections, we state our 

main result that provides a solution of Problem III: 

 

Theorem 6.1. Let { }1 2 1:  , , , ( , ) \  ( , )+= ⊆ −∞ ∞… kA x x x c d  and let { } 1

1
( ) : +

=
= k

i i
s k m  be a 

finite sequence of positive integers. Let , ( )φ j s k , j =0,12, ,…, be the system of orthogonal 

Hermite 0-interpolants at A with respect to ω  on the interval [c,d] as defined in section 

6.1. If , ( )[ , ]∈ A s kf K c d   (cf Section 6.2), then the polynomial , ( ) (., , )n s k A fH  given by 
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(6.8) interpolates f at the (S(k) + n + 1) zeros of 1, ( ) ( )φ +n s k x in the sense of Hermite. In 

addition,  

, ( ) [ , ],
lim (., , ) 0

ω→∞
− =n s k c dn

A f fH ,       (6.9) 

 

Proof. We shall divide the proof into two parts. 

Part I. Interpolation characteristic of , ( ) ( , , )n s k x A fH  at the zeros of 1, ( )φ +n s k : 

To justify this, note that 1, ( )+∪ n s kA Z  is the set of all zeros  of 1, ( )φ +n s k  whereas 

1, ( ) and +n s kA Z  are disjoint sets. If ∈u A  then = iu x for some i leads to   

( ) ( )
, ( ) , ( )( ) ( ) 0, 0,1, , 1= = = −…j j

A s k A s k i iW u W x j m . Thus,  

, ( )

( )( ) ( )

, ( ) ( ) 1 , ( ) 1, ( )( , , ) ( , , ) ( ) ( , , )− += = =
⎤⎤ ⎤= +⎦ ⎦ ⎦A s k

jj j

n s k S k A s k n n s k Wx u x u x u
x A f H x A f W x L x Z fH   

implies that ( ) ( )
, ( ) ( ) 1( , , ) ( , , )−=j j

n s k S ku A f H u A fH . On the other hand, if 1, ( ) +∈ n s ku Z , then 

, ( )1, ( )( , , )+ A s kn n s k WL u Z f
, ( )

( ) 1

, ( )

( ) ( , , )
( )

( )
−−

= =
A s k

S k
W

A s k

f a H u A f
f u

W u
, i.e,  

 
, ( ), ( ) ( ) 1 , ( ) 1, ( )( , , ) ( , , ) ( ) ( , , ) ( )− += + =

A s kn s k S k A s k n n s k Wu A f H u A f W u L u Z f f uH .  

Thus, the polynomial , ( ) (., , )n s k A fH  interpolates f at the simple as well as multiple zeros 

of 1, ( )φ +n s k  

Part II. Convergence of , ( ) (., , )n s k A fH  to f 

The convergence proof here is similar to that given for Theorem 5.1. For the sake of 

completeness, we shall provide all relevant explanations. 

Step 1. By a slight rearrangement of terms in (6.8) and using 6.6)-(6.7), we have 

( )
, ( )

, ( ) , ( )

( ) 1
, ( ) , ( ) 1, ( )

, ( )

, ( ) 1, ( )

(., , )
(., , ) (., , )

   (., , )

−
+

+

⎡ ⎤⎧ ⎫−⎪ ⎪⎢ ⎥− = −⎨ ⎬
⎢ ⎥⎪ ⎪⎩ ⎭⎣ ⎦
⎡ ⎤= −⎣ ⎦

A s k

A s k A s k

S k
n s k A s k n n s k W

A s k

A s k W n n s k W

f H A f
f A f W L Z f

W

W f L Z f

H
 (6.10) 

Step 2. Since 
, ( )

[ , ]∈
A s kWf C c d , there exists , ( ) π∈n s k nQ  which best approximates 

, ( )A s kWf in 

the uniform norm [21]. In addition [21],  
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, ( ) , ( ) [ , ],
lim 0
→∞ ∞

− =
A s kW n s kn c d

f Q         (6.11) 

which implies that 

, ( ) , ( ) [ , ],
lim 0.

ω→∞
− =

A s kW n s kn c d
f Q        (6.12) 

By triangle inequality, we have 

, ( ) , ( )

, ( ) , ( )

, ( ) 1, ( )
[ , ],

, ( ) , ( ) , ( ) , ( ) 1, ( )
[ , ], [ , ],

(., , )

(., , ) .

ω

ω ω

+

+

⎡ ⎤−⎣ ⎦

⎡ ⎤ ⎡ ⎤≤ − + −⎣ ⎦ ⎣ ⎦

A s k A s k

A s k A s k

A s k W n n s k W
c d

A s k W n s k A s k n s k n n s k W
c d c d

W f L Z f

W f Q W Q L Z f
 (6.13) 

Recall that , ( ) ( )A s kW x  is a polynomial independent of n. Thus, by (6.11) 

[ , ],
0 as 

ω
⎡ ⎤− → →∞⎣ ⎦AA W n c d

W f Q n .       (6.14) 

Step 3. , ( )n s kQ  being a polynomial of degree n implies that 

, ( ) 1, ( ) , ( )(., , )+=n s k n n s k n s kQ L Z Q . Moreover, Ln is a linear operator. Therefore, the second 

term on the right side of (6.13) can be written as 

, ( ), ( ) , ( ) 1, ( )
[ , ],

(., , )
A s kA s k n s k n n s k W

c d
W Q L Z f

ω
+

⎡ ⎤− =⎣ ⎦ , ( ), ( ) 1, ( ) , ( ) [ , ],
(., , )

ω+ −
A s kA s k n n s k n s k W c d

W L Z Q f . 

           (6.15) 

Using the representation of Ln in terms of its fundamental polynomials based on 1, ( )+n s kZ , 

we have  

, ( ) , ( )

1

, ( ) 1, ( ) , ( ) , ( ) , ( )
1

( ) ( , , ) ( )( ) ( ) ( )
+

+
=

− = −∑A s k A s k

n

A s k n n s k n s k W n s k W i A s k i
i

W x L x Z Q f Q f z W x l x   

Hence,  

, ( ) , ( )

212

, ( ) 1, ( ) , ( ) , ( ) , ( )[ , ], 1 [ , ],

(., , ) ( )( )
ω

ω

+

+
=

− = −∑A s k A s k

n

A s k n n s k n s k W n s k W i A s k ic d i c d

W L Z Q f Q f z W l . 

           (6.16) 

Step 4. Considering the orthogonality of , ( ) , 1, 2, , 1= +…A s k iW l i n , we have 

( )

, ( )

, ( )

21

, ( ) , ( )
1 [ , ],

1 2 2

, ( ) , ( )
1

( )( )

( ) ( ) ( ) ( ) ( ) .

ω

ω

+

=

+

=

−

⎡ ⎤= − ⎣ ⎦

∑

∑ ∫

A s k

A s k

n

n s k W i A s k i
i c d

dn

n s k i W i A s k i
i c

Q f z W l

Q z f z W x l x x dx

   (6.17) 
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By using the continuity argument as given in case of (5.16), we get to the following 

relation: 

( ), ( )

, ( )

1 2 2

, ( ) , ( )
1

12 2

, ( ) , ( )[ , ], 1

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) .

ω

ω

+

=

+

∞ =

⎡ ⎤− ⎣ ⎦

⎡ ⎤≤ − ⎣ ⎦

∑ ∫

∑∫

A s k

A s k

dn

n s k i W i A s k i
i c

dn

n s k W A s k ic d i c

Q z f z W x l x x dx

Q f W x l x x dx
     (6.18) 

Step 5. Since 
1

1
( )

+

=
∑
n

i
i

l x =1, on the lines of (5.17) we have 

[ ]
12 22

, ( ) , ( )
1

( ) ( ) ( ) ( ) ( )ω ω
+

=

⎡ ⎤ =⎣ ⎦ ∑∫ ∫
d d n

A s k A s k i
ic c

W x x dx W x l x x dx     (6.19) 

Step 6. Combining (6.14)-(6.18), we arrive at 

, ( )

, ( )

, ( ) 1, ( ) , ( )
[ , ],

2

, ( ) , ( )[ , ],

(., , )

( ) ( ) 0 as 

ω

ω

+

∞

⎡ ⎤−⎣ ⎦

⎡ ⎤≤ − → →∞⎣ ⎦∫

A s k

A s k

A s k n n s k n s k W
c d

d

n s k W A s kc d
c

W L Z Q f

Q f W x x dx n
. 

This along with (6.10), (6.12) and (6.13) shows that , ( ) [ , ],
(., , ) 0

ω
− →n s k c d

f A fH  as 

as →∞n . 

 

6.4. On the choice of additional nodes 

In Problems II (cf Chapter 5) and Problem III, any choice of additional nodes in the 

intervals (a,c) and (d,b) does not affect the convergence results (5.7) and (6.9) . However, 

this choice does affect the amount of deviation of the approximating polynomial from the 

function f(x) outside the interval of convergence. On the other hand the choice is made 

out of the shifted Chebyshev zeros, the behavior of approximating polynomial improves 

outside the interval of convergence. This phenomenon will be observed in the simulation 

results given in Chapter 7. 
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7. Computational Aspects  

 
The solutions of Problems I-III (cf Chapters 5 & 6) mainly depend on the computation of 

orthogonal 0-interpolants (OZI) (cf Section 4.2) and their respective zeros. As observed 

in the 3-term recurrence relation, the computation of OZI are entirely based on integrals 

of the form , ( ) ( ) ( )= ∫�
�

b

w
a

g h g x h x w x dx . It may be observed that the polynomials g 

and h grow to higher degree with the successive application of the recurrence relation. 

Thus, the propagation of round-off error in the computation of these integrals causes a 

severe ill-conditioning effect on the 3-term recurrence relation. This is a similar situation 

which we encounter in computing the classical orthogonal polynomials [8], [21]. To 

overcome this problem, approximation of inner products with a suitable quadrature rule 

is highly recommended [17]. Here, we adopt discretized Stieltjes procedure based on n-

point Fejer Quadrature rule. 

 

7.1. Steiltjes procedure 

The orthogonal exponential 0-interpolant computed at each stage by 3-term recurrence 

relation helps us to compute the recursion coefficients. These coefficients are utilized in 

the computation of next stage OEZI. The process of computing recursion coefficients 

with this strategy is due to Steiltjes [17]. 

 

7.2. Transformation of Chebyshev points 

The process of discretiztion usually involves Chebyshev zeros, say ti, which lie in the 

interval (–1,1). In case, the underlying interval (c,d), we shift these zeros by the 

transformation:  

:
2 2
− +

→ = +i i i
d c d ct x t .        (7.1) 
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7.3. Discretization by Fejer quadrature rule 

The integrals (.)∫
b

a

dt  involved in the inner products or otherwise are discretized by the 

following quadrature rule [17]:      

1
( ) ( ) ( ) ( )ω ω

=

≈∑∫
b M

M M M
j j j

ja

F x x dx w F x x       (7.2) 

with nodes ( , )∈M
jx a b :  

2 1: cos  with ;
2 2 2

θ θ − − +
= = = +M M M M M

i i i i i
i d c d ct x t

n
    (7.3) 

and weights 0>M
jw  given by 

( )a b/ 2

2
1

cos 22: 1 2
4 1

θ

=

⎧ ⎫⎪ ⎪= −⎨ ⎬−⎪ ⎪⎩ ⎭
∑

MM
iM

i
j

j
w

M j
       (7.4)

  

The approximation of integral by (7.2) subject to (7.3) and (7.4) is known as Fejer 

quadrature rule. 

 

7.4. Computation of simple zeros of orthogonal 0-interpolants 

Major part of the required interpolant is based on the simple zeros of the orthogonal 0-

interpolants. For this, we  

1. select the set of additional nodes lying out side the interval of convergence:            

A = { xi : i = 1,2,…,k + 1} 

2. construct the product of linear factors ( )− in
ix x  where ni is the multiplicity of xi: 

W(x). 

3. compute the recurrence coefficients in 3-term recurrence relation (3.12) for 

“orthogonal polynomials based  on weight function ( ) ( )=�ω x ω x W2(x) and 

( ) ( )=�ω x ω x W 4(x)” separately. 

4.  compute the set of zeros of orthogonal polynomials, say Z, which emerge as the 

eigenvalues of the tridiagonal matrix based on α ’s and β ’s: . 
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7.5. Computation of required interpolants 

The interpolant which appear as the solution of Problems I-III (cf Chapters 5-6) is 

comprised of 3 components: 

1. Lagrange or Hermite interpolant LH(x,A,f) to a given function f at the set of 

additional nodes A = { xi : i = 1,2,…,k + 1} lying out side the interval of 

convergence. 

2. Modified function: fWA (x) =[ f (x) –LH(x,A,f)]/WLH(x). 

3. Construction of Lagrange interpolant to fWA (x) at Z :  L (x,Z, fWA ). 

4. The required interpolant: IntPn(x,f ) := LH(x,A,f) + WLH(x) L (x,Z, fWA ). 

Note that WLH(x) in the presence of additional nodes is either ( )
w A

x w
∈

−∏  which is the 

case of simple additional nodes or 2( )
w A

x w
∈

−∏ in case of double nodes. Also, in the 

absence of additional nodes, we shall have IntPn(x,f ) := L (x,Z, f ) 

 

7.6. Measurement of Error of approximation and Graphs 

In order to determine the level of accuracy of approximating polynomial “IntPn(x,f)”, we 

consider standard types of errors: 

Definition 3.1. Pointwise  error “Err” with respect to mesh points , 1= ≤ ≤ix u i N , is 

defined as 

Err ( ) ( )x f x= −  IntPn(x,f).        (3.5) 

Definition 3.2. Maximum error “M-Err” with respect to mesh points , 1it i N≤ ≤ , is 

given by 

1
M-Err max ( ) ( , )i ii N

f u u f
≤ ≤

= − nIntP .       (3.6) 

Definition 3.3. Root Mean squared error “RMS-Err” with respect to mesh points 

, 1it i N≤ ≤ , is defined as 
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2

1

( ) ( , )
RMS 

N

i i
i

f u u f

N
=

−
=
∑ nIntP

.       (3.7) 

 

The graphs of test functions f and their approximants IntPn(x,f ) on the interval of 

convergence [c,d] as well on the extended interval [a,b] are drawn in the MATLAB 

environment. 

 

7.7. Interpolating curve out side the interval of convergence 

In order to see the behavior of interpolating curve outside the interval of convergence 

[c,d], we compute f and IntPn(x,f )  on the interval [a,b] that contains both [c,d] and the 

additional nodes. The graphs of f and IntPn(x,f ) are drawn over the interval [a,b]. 
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8. Simulation Results 
 

We have tested the proposed methods for Runge function 2
1( ) ( 1)f x x=

+
 on           

[c,d] = [–2.5,2.5] , the interval of convergence and on the extended interval [a,b] = [–5, 5] 

with the set of preassigned A = {–5, –4, –3, 3, 4, 5}. Our objective is to compare the two 

types of errors namely, point-wise error and root mean squared error, that arise from the 

error function ‘ (.) (.)nf IntP− ’ for n = 5, 10, 20. Here, n represents the number of 

orthogonal polynomials involved in the interpolation process. More precisely, we shall 

consider IntPn(x,f ) relevant to n zeros of orthogonal polynomials over [c,d] = [–2.5,2.5] 

when 

i. there is no preassigned node involved in the interpolation process, i.e.,  

IntPn(x,f ) =Ln(x,Z,f ) 

as considered in Erdos-Turan Theorem (cf Theorem 3.1). 

ii. a finite set A of preassigned simple or double nodes lying outside (c,d) is involved 

in the interpolation process, i.e., 

(a)  IntPn(x,f ) = ,6 ( , )n z fL  

as considered in our main result related to simple nodes (cf Theorem 5.2), 

(b)  IntPn(x,f ) = , (6) ( , )n s z fH  

as considered in the last main result related to double nodes (cf Theorem 

6.1). 

 

8.1. Explanation of simulation results 

For the explanation of simulation results, we recall that the set of all zeros of an 

orthogonal 0-interpolant nφ  depends on the nature of the preassigned zeros which may be 

simple or double. In case of simple zeros, nφ = Wpn  where ( ) ( )
w A

W x x w
∈

= −∏  and for 

the second case nφ = 2 ˆnW p . In both cases, pn  and ˆnp have n simple zeros lying within 

(c,d) W 2(x) = (–2.5,2.5). However, pn and ˆnp are orthogonal polynomials over [c,d] with 

respect to weight functions W 2(x)  and W 4(x) respectively. On the other hand, 
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nφ ˆn np p= =  in the absence of preassinged nodes and therefore nφ ,   pn and ˆnp are 

orthogonal over [c,d] with respect to weight function 1. Thus, it is natural to discuss the 

errors due to 

i.  IntPn = Ln(., Z, f ) in Erdos-Turan Theorem based on the zeros of orthogonal 

polynomial over [c,d] with respect to  

a. weight function w(x) = 1, 

  b. weight function w(x) = W 2(x) , 

  c. weight function w(x) = W 4(x), 

ii.  IntPn = ,6 ( , )n z fL  in Theorem 5.2, 

iii. IntPn(x,f ) = , (6) ( , )n s z fH  in Theorem 6.1. 

It may be noted that in all the three cases a-c of (i) we do not consider interpolation at any 

preassigned zero, whereas in case of (ii) and (iii), the interpolant IntPn respectively 

interpolates f  at 6 simple zeros and 6 double zeros.  

 

8.2. Some abbreviations 

We have divided our computational work into two parts: 

Part I:  Error ‘f  – IntPn ’ on the interval of convergence, i.e., [c,d] 

Part II: Error ‘f  – IntPn ’ on the extended interval, i.e., [a,b]. 

Two types of errors are computed over a set of mesh points in both intervals: 

i. Maximum of absolute value of pointwise error, 

ii. Root mean squared error. 

These errors ‘f  – IntPn’ are separately tabulated. The graphs of Runge function and the 

respective interpolant are provided below each table. For the sake of simplicity we have 

used uniform abbreviations in the tables. They are as follows: 

i.  Er[E-T(1)]:  Error based on Erdos-Turan Theorem when  w(x) = 1, 

ii. Er[E-T(W 2)]:  Error based on Erdos-Turan Theorem when  w(x) = W 2(x) , 

iii. Er[E-T(W 4)]:  Error based on Erdos-Turan Theorem when  w(x) = W 4(x) , 

iv. Main Er[ nL ]:  Error based on one of our main Theorems (cf Theorem 5.2) 

v. Main Er[ nH ]:  Error based on another main result (cf Theorem 6.1). 
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In addition, we used the following abbreviation for the two errors:    

i.  Max(Abs Er) : Maximum of the absolute values of the pointwise error based on 
mesh points of the underlying interval, 

ii. RMS: Root mean squared error based on the mesh points of the underlying 
interval.  

 
8.3. Simulation results and graphs 

Based on the above explanation, the outcome of our computational work is provided in 

the tables and graphs in the next pages. The computational work is subdivided into two 

parts. Part I deals with the convergence of interpolating processes over the interval         

[c,d] = [ –2.5,2.5] and Part II takes care of other aspects like interpolation at preassidgned 

nodes and behavior of error outside [c,d]. 
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Part I. Interval [-2.5, 2.5] 

Table I-(i)  n=5 

 
Graphs of Function and Interpolating Polynomial 

 

 
E-T(1) 

           
   E-T ( 2W )     E-T ( 4W )

            
 Main [ nL ]                                                   Main [ nH ] 

 Max(Abs Er) RMS 
Er[E-T(1)] 0.2478 0.1155 

Er[E-T(W 2)] 0.8078 0.3451 
Er[E-T(W 4)] 1.9709 0.8981 
Main Er[ nL ] 0.0919 0.0548 
Main Er[ nH ] 0.0349 0.0247 
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Table I-(ii)  n = 10 

 

Graphs of Function and Interpolating Polynomial 
 

 
E-T(1) 

           
E-T ( 2W )     E-T ( 4W )              

           
                           Main [ nL ]                                                      Main [ nH ] 

 

 Max(Abs Er) RMS 
Er[E-T(1)] 0.0342 0.0127 

Er[E-T(W 2)] 0.0762 0.0251 
Er[E-T(W 4)] 0.2849 0.0939 
Main Er[ nL ] 0.0176 0.0065 
Main Er[ nH ] 0.0091 0.0033 
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Table I-(iii)  n=20 

 

Graphs of Function and Interpolating Polynomial 
 

 
E-T(1) 

           
E-T ( 2W )     E-T ( 4W )              

           
               Main [ nL ]                                                       Main [ nH ] 
 

 Max(Abs Er) RMS 
Er[E-T(1)] 6.8120e-004 2.6183e-004 

Er[E-T(W 2)] 0.0023 5.5617e-004 
Er[E-T(W 4)] 0.0097 0.0022 
Main Er[ nL ] 3.5070e-004 1.3493e-004 
Main Er[ nH ] 1.8047e-004 6.9494e-005 
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Part II. Interval [-5, 5] 
Table II-(i) n=5 

 
 

Graphs of Function and Interpolating Polynomial 
 

 
E-T(1)   

                  
      E-T ( 2W ) E-T ( 4W )

            
                           Main [ nL ]                                                     Main [ nH ]                
 

 Max(Abs Er) RMS 
Er[E-T(1)] 25.6868 7.9663 

Er[E-T(W 2)] 42.4778 15.5527 
Er[E-T(W 4)] 68.4779 22.0419 
Main Er[ nL ] 1.6752 0.5056 
Main Er[ nH ] 0.1456 0.0422 



 46

 
Table II-(ii) n=10 

 

Graphs of Function and Interpolating Polynomial 
 

 
E-T(1) 

           
       E-T ( 2W )          E-T ( 4W )              

           
                               Main [ nL ]                                                      Main [ nH ] 
  

 Max(Abs Er) RMS 
Er[E-T(1)] 516.3618 119.6932 

Er[E-T(W 2)] 848.3145 229.5151 
Er[E-T(W 4)] 1.3997e+003 329.9662 
Main Er[ nL ] 25.6391 7.0482 
Main Er[ nH ] 2.1698 0.5509 
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Table II-(iii) n=20 

 

Graphs of Function and Interpolating Polynomial 
 

 
         E-T(1) 

           
       E-T ( 2W )         E-T ( 4W )              

           
 Main [ nL ]                                                      Main [ nH ] 

 Max(Abs Er) RMS 
Er[E-T(1)] 5.4506e+006 9.1502e+005 

Er[E-T(W 2)] 8.9261e+006 1.7401e+006 
Er[E-T(W 4)] 1.4621e+007 2.4703e+006 
Main Er[ nL ] 1.7179e+005 3.9627e+004 
Main Er[ nH ] 1.2037e+004 2.7845e+003 
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9. Concluding Remarks 

 
We present our observations related to the simulation results provided in the Tables and 

graphs (cf Section 8.3). We subdivide our discussion into two parts. 

  

9.1. A note on convergence of various interpolating processes 

According to Theorems 3.1, 5.2 and 6.1, the error over the interval [c,d], in all the 

interpolation processes decreases to zero as n, the number of zeros of orthogonal 

polynomial over [c,d] increases  . This is what we observe in the simulation results given 

in part I of Section 8.3. However, a comparative study of Er[E-T(1)], Er[E-T(W 2)] and 

Er[E-T(W 4)] in worth to note. In fact, all the errors in the three cases are related to Erdos-

Turan interpolating polynomials. Based on Tables I-(i)-(iii) and the corresponding graphs 

we note that the Er[E-T(1)] is better to Er[E-T(W 2)] and the  latter is better to           

Er[E-T(W 4)]. On the other side, we note that with the involvement of preassigned simple 

or double nodes in the Lagrange or Hermite interpolants respectively leads to an 

improvement in the reduction of error over the earlier three cases, the Hermite interpolant 

considered in Theorem 6.1 is the best one .   

 

9.2. Behavior of interpolants outside the interval of convergence 

It may be noted that convergence outside (c,d), the interval of convergence, is not an 

objective of our work. In case of extended interval [a,b], we are merely considerate about 

interpolation at additional points of the polynomials nL and nH (cf Theorem 5.1, 5.2 and 

6.1). We observe this phenomenon in all the graphs given in Part II of Section 8.3. As far 

as comparative error is concerned, we note from the Tables II-i-iii that the Main Er[ nH ] 

is better to Main [ nL ] and  Main [ nL ] is better to the errors due to rest of the 

interpolating processes. 

    

9.3. The case of shifted Chebyshev points as additional nodes 

We have noticed the selection of Chebyshev points when considered in the interpolating 

processes provides an improvement in the reduction of error as compared to any other 
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choice, in particular, the uniformly distributed points. It addition, this choice preserves all 

the properties discussed in the preceding two sections.   
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