Section 15.7

(Part 1) Triple integrals in cylindrical coordinates

Learning outcomes

After completing this part, you will inshaAllah be able to

- 1. evaluate triple integrals in cylindrical coordinates
- 2. convert triple integrals from rectangular coordinates to cylindrical coordinates.

Recall

- Cylindrical coordinates: (r, θ, z)
- Conversion formulas for cylindrical coordinates

$$x = r\cos\theta, \ y = r\sin\theta, \ z = z$$

Aim: Learn to integrate $f(r, \theta, z)$

- **Recall** area element in polar coordinates: $dA = rdrd\theta$
- Volume element in cylindrical coordinates $dV = rdzdrd\theta$

15.7,

Evaluating triple integrals in cylindrical coordinates

Given a function $f(r, \theta, z)$ over a soild G such that

- *G* is bounded above by $z = g_2(r, \theta)$ and below by $z = g_1(r, \theta)$
- and the projection *R* of *G* on XY-plane is a simple polar region.

Then the triple integral is evaluated as follows:

$$\iiint_{G} f(r,\theta,z)dV = \iint_{R} \left[\int_{g_{1}(r,\theta)}^{g_{2}(r,\theta)} f(r,\theta,z)dz \right] dA$$

or

$$\iiint\limits_{G} f(r,\theta,z)dV = \int_{\theta_1}^{\theta_2} \int_{r_1(\theta)}^{r_2(\theta)} \int_{g_1(r,\theta)}^{g_2(r,\theta)} f(r,\theta,z)dzdrd\theta$$

Example 15.7.1

Evaluate $\iiint_G r \sin \theta dV$ where *G* is the region that lies below the plane $z = r \cos \theta + 2$, above the XY-plane and between the cylinders r = 1 and r = 2.

Solution

Done in class

Example 15.7.2

See class notes for the example & solution

End of 15.7 (PART 1)

(Part 2) Triple integrals in spherical coordinates

After completing this part, you will inshaAllah be able to

1. evaluate triple integrals in spherical coordinates

Aim: Learn to integrate $f(\rho, \theta, \phi)$

Volume element in cylindrical coordinates $dV = \rho^2 \sin \phi d\rho d\theta d\phi$

Evaluating triple integrals in spherical coordinates

Example 15.7.4Evaluate $\iiint_G 16\rho\cos\phi dV$ where G is the upper half of sphere $x^2 + y^2 + z^2 = 1.$ SolutionDone in classExample 15.7.5Evaluate $V = \iiint_G dV$ where G is the bounded by $\phi = \frac{\pi}{6}, \rho = 3.$ SolutionDone in class

End of the course You have the license to steer all models of Math201 15.75