Learning outcomes

After completing this section, you will inshaAllah be able to

- 1. find equation of tangent plane and normal line to a surface
- 2. determine tangent line to the curve of intersection of two surfaces

What are tangent planes & normal lines?

Equation of tangent plane & normal line to a surface

- Given a surface z = f(x, y), we can write it as F(x, y, z) = c.
 - ★ i.e. we can think of the surface z = f(x, y) as a level surface F(x, y, z) = c of a function of three variables.

See section 14.6

♦ Hence, $\nabla F(x_0, y_0, z_0)$ will be normal to the surface F(x, y, z) = c or z = f(x, y) at (x_0, y_0, z_0) .

Given the surface F(x, y, z) = c.

- The vector $\nabla F(x_0, y_0, z_0)$ is normal to surface at (x_0, y_0, z_0) .
- The equation of the tangent plane at (x_0, y_0, z_0) is

$$F_{x}(x_{0}, y_{0}, z_{0})(x - x_{0}) + F_{y}(x_{0}, y_{0}, z_{0})(y - y_{0}) + F_{z}(x_{0}, y_{0}, z_{0})(z - z_{0}) = 0$$

• The equation of the normal line at (x_0, y_0, z_0) is

$$x = x_0 + F_x(x_0, y_0, z_0)t, \quad y = y_0 + F_y(x_0, y_0, z_0)t, \quad z = z_0 + F_z(x_0, y_0, z_0)t$$

Example 14.7.1 Find the equation of tangent plane and normal line to the surface $x = y^2 + z^2 - 2$ at (-1,1,0).

Solution

Note: to write Eq. in form F(x, y, z) = c

Example 14.7.2 Show that the equation of tangent plane to the ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \text{ at } (x_0, y_0, z_0) \text{ can be written in the form}$$

$$\frac{x_0 x}{a^2} + \frac{y_0 y}{b^2} + \frac{z_0 z}{c^2} = 1.$$

Solution

Done in class

Done in class

What do

we need for

equation of

equation of

plane and

line

Solution

Find the point on the surface $z = 3x^2 - y^2$ at which the tangent plane is parallel to the plane 6x + 4y - z = 5. Done in class

Using gradient to find tangent lines to curves of intersection of two surfaces

Let F(x, y, z) = 0, G(x, y, z) = 0 be two
intersecting surfaces & (x₀, y₀, z₀) be a point on
the curve of intersection.
Then both ∇F(x₀, y₀, z₀) and ∇G(x₀, y₀, z₀)
are normal to the curve of intersection.
This implies v = ∇F × ∇G is parallel to the tangent line to the curve of intersection.
Hence, we can write equation of the tangent line to the curve of intersection.

Example 14.7.4 Find the equation of tangent line to the curve of intersection of $z = x^2 + y^2$ and $x^2 + 4y^2 + z^2 = 9$ at (1-,1,2).

Solution Dor

Done in class

Do Qs. 1-30

End of Section 14.7