Learning outcomes

After completing this section, you will inshaAllah be able to

- 1. explain what is meant by directional derivative
- 2. compute directional derivative
- 3. explain what is meant by gradient vector
- 4. know and apply important facts about gradient vectors

We have done partial derivatives

- f_x : rate of change of 'f' in x-direction
- f_y : rate of change of 'f' in y-direction

Here we do directional derivatives

• rate of change of 'f' in any given direction

Main question:

How to compute directional derivatives?

 14.6_{3}

Directional derivative in terms of gradient

Example 14.6.3 If $f(x, y) = x \cos y$.

- (a) Find the gradient of f.
- (b) Find directional derivative of f at (1,0) in the direction of $\vec{\mathbf{v}} = \langle 2, 1 \rangle$.

Solution

Done in class

Important fact-1 about gradient

Gradient vector determines the maximum/minimum rate of change of a function

Let 'f' be a function of 2 Or 3 variables.

- The maximum value of the directional derivative of 'f' occurs in direction of gradient vector ∇f .
- Hence, the maximum value of the directional derivative of 'f' (i.e. maximum rate of change of

f') is $|\nabla f|$

increase Maximum decrease ∇f (x, y) $-\nabla f$

Maximum

Why?

Since
$$D_{\mathbf{u}}f = \nabla f \cdot \mathbf{u} = |\nabla f| |\mathbf{u}| \cos \theta = |\nabla f| \cos \theta$$

Example 14.6.4 Find the direction in which $f(x, y, z) = x^3 z^2 + y^3 z + z - 1$ increases most rapidly at P(1,1,-1). Find the rate of change at P(1,1,-1) in that direction.

Solution Done in class

14.65

Gradient vector determines the maximum/minimum rate of change of a function

Let 'f' be a function of 2 Or 3 variables.

- The minimum value of the directional derivative of 'f' occurs in direction opposite to that of gradient vector ∇f .
- Hence, the minimum value of the directional derivative of 'f' (i.e. minimum rate of change of

Why?

f') is $-\nabla f$

Since $D_{\mathbf{u}}f = \nabla f \cdot \mathbf{u} = |\nabla f| |\mathbf{u}| \cos \theta = |\nabla f| \cos \theta$

Exercise Find the direction in which $f(x, y, z) = 4e^{xy} \cos z$ decreases most rapidly at $P(0,1,\frac{\pi}{4})$. Find the rate of change at $P(0,1,\frac{\pi}{4})$ in that direction.

 14.6_{6}

Important fact-2 about gradient

Given a surface z = f(x, y).

- Of course the direction $\nabla f(x_0, y_0)$ is important
- How to determine this direction from the contour map of f(x, y)

Also see	Recall that for $z = f(x, y)$ we can find the level curve	
e.g. below	- $f(x, y) = k$ that passes through the point (x_0, y_0)	>

• Let z = f(x, y) be a surface and f(x, y) = k be the

level curve that passes through (x_0, y_0) .

• Then $\nabla f(x_0, y_0)$ is orthogonal to the level curve f(x, y) = k

Example 14.6.5

- (a) Find and sketch the level curve of $f(x, y) = x^2 + 4y^2$ at P(-2, 0)
- (b) Draw the gradient vector at P.

Done in class

Important fact-2 about gradient (continued)

- Let w = f(x, y, z) be a function of three variables.
- Then $\nabla f(x_0, y_0, z_0)$ is orthogonal to the level curve f(x, y, z) = k

(which passes through (x_0, y_0, z_0))

This important fact will be

used in the next section

Do Qs: 1-60

End of Section 14.6