Learning outcomes

After completing this section, you will inshaAllah be able to

- 1. know how to check differentiability of z=f(x,y)
- 2. learn how to approximate z=f(x,y) using local linear approximation
- 3. find differential of a function of two or more variables

Checking differentiability of z=f(x,y)

A function f(x, y) is differentiable at the point (x_0, y_0)

if
$$\frac{\partial f}{\partial x}$$
 and $\frac{\partial f}{\partial y}$ are continuous at (x_0, y_0) .

Local linear approximation of z=f(x,y)

Examples 14.4.1

- (a) Show that $f(x, y) = xe^{xy}$ is differentiable at (1,0).
- (b) Find local linear approximation of $f(x, y) = xe^{xy}$ at (1, 0).
- (c) Use this local linear approximation to approximate f(1.1, -0.1)

Solution Done in class

Both of above ideas can similarly be extended to functions of more variables

14.4,

Examples 14.4.2 If $z = 3x^2 - xy$, find dz.

Solution

Done in class.

End of Section 14.4

Do Qs. 5-8, 25-35.