Learning outcomes

After completing this section, you will inshaAllah be able to

- 1. understand the definition of functions f(x, y) of two variables and
 - **a.** learn how to find domain of f(x, y)
 - **b.** learn how to sketch f(x, y)
 - c. know what are level curves of f(x, y)
- 2. understand the definition of functions f(x, y, z) of three or more variables and
 - **a.** learn how to find domain of f(x, y, z)
 - **b.** know what are level surfaces of f(x, y, z)

Level curves of f(x, y)

• Consider the graph of $f(x, y) = x^2 + y^2$ or $z = x^2 + y^2$

See graph in class

- It is a circular paraboloid
- At each height level 'k' or 'z=k' we get a circle x² + y² = k or f(x, y) = k
- So, in general, the graph of f(x, y) can be thought as piecing together curves sitting at different height levels.
- The projection (on the XY plane) of the curve at height level '*k*' is called a level curve with constant '*k*'.
- A set of some level curves of f(x, y) is called a contour map (or contour plot) of f(x, y).

Example 14.1.4 Consider f(x, y) = 4x² + y².
(a) Describe level curves of f(x, y)
(b) Sketch a contour map of f(x, y) using level curves with k = 0,1,2.
(c) Find the level curve which passes through the point (1,0).

Solution

Done in class

14.1₃

Level surfaces of f(x, y, z)

- Since the graph of f(x, y, z) would be in 4 dimensional space, therefore, we cannot visualize it easily.
- But we can get an idea from its level surfaces.

Similarly we can define

functions of n-variables for n>3

For
$$f(x_1, x_2, \dots, x_n) = \sum_{k=1}^n x_k$$
, find $f(1, 1, \dots, 1)$

Graphing z = f(x, y) using Matlab

Covered in the following (available on Course WebCT page)

- Help Sheet "Surfaces with Matlab"
- Matlab Assignment # 2

End of Section 14.1