Learning outcomes

After completing this section, you will inshaAllah be able to

- 1. know cylindrical coordinate system
- 2. know spherical coordinate system
- 3. learn conversions between
 - a. cylindrical and rectangular coordinates
 - b. spherical and rectangular coordinates
 - c. cylindrical and spherical coordinates
- In 2-dimensions, we learnt polar coordinates which gave an easier description of some curves
- Here, we introduce two coordinate systems in 3-dimensions,

which give easier description of some surfaces.

Example 12.8.1 Find cylindrical coordinates of the point with rectangular coordinates (3, -3, -7).

Example 12.8.2 Convert the cylindrical coordinates $(2, 2\pi/3, 1)$ into cylindrical coordinates.

Both solutions done in class

12.8,

Example 12.8.3	Find the equation of ellipsoid $4x^2 + 4y^2 + z^2 = 1$ in cylindrical
	coordinates.

Done in class

Solution

Identify the following surfaces (which given in cylindrical coordinates)

Hint: First convert into rectangular coordinates.

(a) r = 5(b) $r^2 + z^2 = 100$ (c) z = r

Solution

Done in class

Example 12.8.5

- (a) Convert $\left(-1, 1, -\sqrt{2}\right)$ from rectangular to spherical coordinates.
- (b) Convert $\left(2, \frac{\pi}{4}, \frac{\pi}{3}\right)$ from spherical to rectangular coordinates.

Example 12.8.6 Find the equation of $x^2 + y^2 - z^2 = 1$ (of hyperboloid of one sheet) in spherical coordinates

Example 12.8.7 Identify the following surfaces

(a) $\rho = 5$ (b) $\rho \sin \phi = 2$

All solutions done in class

Do Qs: 1-12, 15-42.

End of Section 12.8