Learning outcomes

After completing this section, you will inshaAllah be able to

- 1. know point-normal form of equation of a plane
- 2. find equation of plane using different given information
- 3. determine whether or not given planes are parallel or perpendicular
- 4. find line of intersection of two planes
- 5. find distance
 - a. of a point from a plane
 - b. between two parallel planes
 - c. between two skew lines

	Parallel or perpendicular planes	
Two	planes are parallel if their normals are parallel perpendicular if their normals are perpendicular	
Example 12.6.4 Solution	Are the planes $x - y + 3z - 2 = 0$ and $2x + z = 1$ (a) parallel (b) perpendicular Done in class.	
Example 12.6.5 Solution	Find equation of the plane through $P(5, -2, 4)$ that is parallel to the plane $3x + y - 6z + 8 = 0$ Done in class.)
Example 12.6.6	Find equation of the plane through the points $P_1(-2,1,4)$, $P_2(1,0,3)$ that is perpendicular to the plane $4x - y + 3z = 2$.	
Solution Example 12.6.7	Done in class. Find equation of the plane through $P(-1, 2, -5)$ that is	
Solution	perpendicular to the planes $2x - y + z = 1$ and $x + y - 2z = 3$. Done in class.	

How to find line of intersection: understand through examples

Method 1: Solvi	ng system of two linear equations	
Example 12.6.8	Find the equation of line of intersection of the planes	
	$P_1: x - y + 4z = 3$	
	$P_2: 2x+y-z=-3$	
Solution	Done in class.	
Method 2: Using the following important fact		
If P_1 ,	P_2 are two intersecting planes with normals \vec{n}_1, \vec{n}_2 then	
	P_2 are two intersecting planes with normals \vec{n}_1, \vec{n}_2 then $\vec{n}_1 \times \vec{n}_2$ is parallel to the line of intersection of P_1, P_2 .	
Example 12.6.9	(Using method 2) Find the equation of line of intersection of the	
	planes	
	$P_1: x - y + 4z = 3$	
	$P_{1}: x - y + 4z = 3 P_{2}: 2x + y - z = -3$	
Solution	Done in class.	
Exercise 12.6.10	Find the equation of the plane through $P(1,2,-1)$ that is	
	perpendicular to the line of intersection of the planes	
	$P_1: 2x + y + z = 2$	
	$P_1: 2x + y + z = 2$ $P_2: x + 2y + z = 3$	
	$\mathbf{r}_2 \cdot \mathbf{x} + \mathbf{z}_y + \mathbf{z} = \mathbf{z}$	

Distance between a point and a plane

Example 12.6.12Find the distance between the point $P_0(0, -1, 1)$ and the plane2x - 3y + z = 6.SolutionDone in class.

Distance between two parallel planes

• Choose a point $P_0(x_0, y_0, z_0)$ on one plane

Find the distance of P₀(x₀, y₀, z₀) from the other plane
 [using Formula (**) on previous page]

Exercise 12.6.13 Show that the planes

 $P_1: \quad 4x - 6y + 2z = 8$ $P_2: \quad 2x - 3y + z = 6$

are parallel. Find the distance between the two planes.

Answer:
$$\frac{2}{\sqrt{14}}$$

Distance between two skew lines

Two skew lines L₁, L₂ can be viewed as lying in two parallel planes P₁, P₂
So the question of finding distance between L₁ and L₂ is equivalent to finding distance between parallel planes P₁ and P₂
Find distance between parallel planes P₁ and P₂
Find distance between above idea.

Example 12.6.14 Find the distance between skew lines

$$L_1: \quad x = 1+t, \ y = -2+3t, \ z = 4-t$$
$$L_2: \quad x = 2t, \quad y = 3+t, \quad z = -3+4t$$

Solution

Done in class.

End of Section 12.6

Do Qs: 1-47