Section 12.4 Cross product

12.4,

Learning outcomes

After completing this section, you will inshaAllah be able to

1. know meaning of vector product and its basic properties & facts
2. apply cross product to find areas of parallelograms and triangles
3. know what is scalar triple product

4. apply scalar triple product to find volume of parallelepipeds.
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Definition

If U:<u1,u2,u3>, \7:< 1,V2,V3> then the
cross product of Uand V is

UxV= <U2V3 —u,v,, uv, —u,v;, uyv, - U2V1>

Result: a vector\j Easier way to remember

i j k
UxV=U, U, U,
Vl V2 V3

Consider i = <2,1,—1> V= <—3,4,1>
a. Find uxv
b. Find vxUu
c. Find (HxV)ﬂ and (GxV)-V

Solution Done in class.

Important fact 1

U xV is orthogonal to both U and V

SCI (I MVR W] Show that i x j=K, jxk=1i, kxi=]j.
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Basic properties of vector product

following relations hold:
o UxV=—(VxU)
o Ux(V+W)=(UxV)+UxW)
o (U+V)xW=(UxW)+(VxW)
o k(uxV)=(ku)xVv=ux(kv)

e Ux0=0xu=0

\. UxU=0

ér any vector u, v and w and any scalar k, the \

/

Geometric description of vector product

If O is the angle between Uand V then
assumption

0zo0<r J[ Ju<] = [v]sin

= Direction of UxV \
given by right hand rule
= See explanation of

“right hand rule” in

class /

Important fact 2

UxV=0 < Uand Vare parallel

DNV %  Check if the whether or not the vectors U = <—1,1,1> ,

V= <1, 2,3> are parallel.

Not parallel
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Application of cross product

Recall

= The area of a parallelogram
determined by vectors U, V is
given by
A =base x altitude

= If Qis the angle between U, V then

e

o altitude =|v||sin@

from figure

o base=|d]

o area=|ul|v]sing =uxv]

ﬂl’he area of a parallelogram\

determined by Uand V is

>

A-Jux]
- _/
Find the area of triangle

P,=(-255,-1), P,=(1
Done in class.

vl sin &

(I'he area of triangle having adjacent\

sides given by Uand V is

-2
2

\_ J

with vertices P, =(1,4,6),

-11).
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Scalar triple product

The product U - (VxW)is called

scalar triple product of U, V and W

4

Efficient way of computing

Result: a scalar If U={U,U,,Uy), V=(V,V,,V5) and

W= (W, W,, W,) then

D
u-(vxw)=v; v, V,
Wy W, Wy

STEUIERPER If 0 =(1,2,3), V=(4,56), w=(7,8,0), find U-(VxWw).
Done in class.

Why?

(6 Important property e one interchange of rows of
o determinant  changes its
U-(VXW)=W-(UxV)=V-(WxU
(V> W) =W (U xV) = V- (W) value by ‘1

e here we make two

interchanges
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Application of scalar triple product

CIFinding volume of a parallelepiped

Recall
= The volume of a parallelepiped
L VW
determined by vectors u, v, Wis given by
1]
V =area of base x altitude L
= |If Qis the angle between U and VxW
<
then from figure //' w
. g
o altitude = |t||cos ¢ p

o area of base= ||\7 % W||

o V =‘ﬁ-(\7><W)‘

/4

The volume of a parallelopiped h O] Important property
determined by U, Vand W is — U, Vand W are coplanar

|v :\a-(VXW)H & u-(vxw)=0
_J
CIERPRN:  Find the volume of parallelepiped determined by

0=(-5,2,4), V=(11-2), w=(2,-4,6).
Done in class.

DN N Are the vectors 0 = <1, 4,—7> V= <2,—1, 4> , w=(0,-9,18)

()

\_

o’

coplanar.

End of Section 12.4
Do Qs. 1-30.




