Learning outcomes

After completing this section, you will inshaAllah be able to

1. learn how to find area bounded by polar curves

11.3₁

Area enclosed by polar curves

First see explanation in class

Example 11.3.1Set up an integral for finding area of the inner loop of limacon
 $r = 2 + 4\cos\theta$.SolutionDone in classExample 11.3.2Set up an integral for finding area of four leaved rose
 $r = \cos 2\theta$.SolutionDone in class

Exercise 11.3.3 Find the area of one leaf (or loop) of $r = \sin 3\theta$.

<u>Answer:</u> $\frac{\pi}{12}$.

11.3₂

Area between two polar curves

See explanation in class

Caution about finding points of intersections of polar curves

Example 11.3.6 Find all points of intersections of $r = 1 + \cos\theta$ and $r = 2\cos\theta$ for $0 \le \theta < 2\pi$.

Solution

- By equating $1 + \cos \theta = \cos 2\theta$ we get $\cos \theta = 1 \implies \theta = 0$.
- From the sketch below, we see that "pole" is also a point of intersection.

End of 11.3