Learning outcomes

After completing this section, you will inshaAllah be able to

- 1. learn how to find slopes and tangent lines of parametric curves
- 2. learn how to find slopes and tangent lines of polar curves
- 3. know special trick to find tangent line to polar curves at pole
- 4. find arc length of polar curves

Tangent lines to parametric curves

Given a parametric curve
$$x = f(t), y = g(t);$$
 $a \le t \le b$

• $\frac{dy}{dx}$ is defined when $\frac{dx}{dt} \neq 0$ and

• Similarly

***** slope of tangent line at $x = f(t_0)$, $y = g(t_0)$

$$\left.\frac{dy}{dx}\right|_{t=t_0}$$

***** Tangent horizontal when

$$\frac{dy}{dt} = 0$$
 and $\frac{dx}{dt} \neq 0$

***** Tangent vertical when

$$\frac{dx}{dt} = 0$$
 and $\frac{dy}{dt} \neq 0$

* Points where $\frac{dy}{dt} = 0$ and $\frac{dx}{dt} = 0$ are called singular points

Example 11.2.1 Consider the parametric equation $x = t^2$, $y = t^3 - 3t$. Find

$$\frac{dy}{dx}, \frac{d^2y}{dx^2}$$
 at $t = 1$

Done in class

Example 11.2.2 Consider $r = 1 + \sin \theta$,

- a) Find the equation of tangent line at $\theta = 0$.
- b) Find the points on the cardioid where tangent line is horizontal or vertical.

 $0 \le \theta \le 2\pi$.

c) Find singular points.

Solution

•
$$y = r \sin \theta = (1 + \sin \theta) \sin \theta$$

$$\Rightarrow \quad \frac{dy}{d\theta} = (1 + \sin\theta)\cos\theta + \cos\theta\sin\theta = \cos\theta(1 + 2\sin\theta)$$

•
$$x = r\cos\theta = (1 + \sin\theta)\cos\theta$$

$$\Rightarrow \frac{dx}{d\theta} = (1 + \sin\theta)(-\sin\theta) + \cos\theta\cos\theta$$
$$= -\sin\theta - \sin^2\theta + \cos^2\theta = -\sin\theta - \sin^2\theta + 1 - \sin^2\theta$$
$$= -2\sin^2\theta - \sin\theta + 1 = (1 + \sin\theta)(1 - 2\sin\theta)$$

Rest of solution done in class

Tangent lines to polar curves at pole

• We have seen that slope of tangent line to $r = f(\theta)$ at $\theta = \theta_0$ is given by

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{r\cos\theta + \frac{dr}{d\theta}\sin\theta}{-r\sin\theta + \frac{dr}{d\theta}\cos\theta}\Big|_{\theta=\theta_0}$$
(*)

- We want to know equation of tangent at pole.
- Note that at pole we have r = 0.
- Suppose r = 0, when $\theta = \theta_0$. Then from (*), the slope of tangent line at pole (i.e. at the point $(0, \theta_0)$) is

$$\frac{dy}{dx} = \frac{\sin \theta_0}{\cos \theta_0} = \tan \theta_0$$
But this is slope of the line $\theta = \theta_0$
Hence the tangent line at origin is $\theta = \theta_0$

Example 11.2.3Find tangent lines to $r = 2\sin 3\theta$ at pole for $0 \le \theta < \pi$.SolutionDone in class.

11.24

Arc length in polar

Recall from Math 102

For parametric curve x = x(t), y = y(t), the arc length of the curve for $a \le t \le b$ is given by $L = \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt \qquad (*)$

• (as on Slide 3) Regarding $r = f(\theta)$ as the parametric curve with parameter θ , we have

$$x = r\cos\theta \quad (\text{or } x = f(\theta)\cos\theta)$$
$$y = r\sin\theta \quad (\text{or } x = f(\theta)\sin\theta)$$

This implies

$$\frac{dx}{d\theta} = \frac{dr}{d\theta} \cos\theta - r\sin\theta \tag{1}$$

$$\frac{dy}{d\theta} = \frac{dr}{d\theta}\sin\theta + r\cos\theta \tag{2}$$

• Using (1), (2) in (*) we get

Given a polar curve $r = f(\theta)$. The arc length of the curve from $\theta = \alpha$ to $\theta = \beta$ is $\begin{aligned}
& L = \int_{\alpha}^{\beta} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta \\
& \text{ince}
\end{aligned}$ Example 11.2.4 Find the length of the cardioid $r = 1 + \sin \theta$.

Solution

Done in class.

<u>Answer</u>: π

End of 11.2

Do Qs: 1-46, 49-53