Learning outcomes

After completing this section, you will inshaAllah be able to

- 1. know what are polar coordinates
- 2. see the relation between rectangular and polar coordinates
- 3. learn how to graph polar curves using
 - a. Method I: (from table of values)
 - b. Method II: (by considering r, θ as rectangular coordinates)
 - c. Method III: (by making use of symmetries in above two methods)
 - d. MATLAB
- 4. know important families of polar curves

What are polar coordinates?

- Coordinate system: just a way to define a point.
- In rectangular coordinates a point 'P' is given by coordinates (x,y) which means

• Another way to define the point 'P' is as (r, θ) which means

 11.1_{3}

represent the same point?

Relation between rectangular & polar coordinates

• See explanation in the class

11.1₄

The above formulas (*) and (**) can also be used to convert equations from one coordinate system to another.

Example 11.1.6 Express the following into rectangular coordinates.

1)
$$r = 3$$
 2) $r \sin \theta = 2$

3)
$$r = 3\cos\theta$$
 4) $r = \frac{6}{3\cos\theta + 2\sin\theta}$

Solution

Done in class

Example 11.1.7 Solution Convert $x^2 + y^2 - 6y = 0$ into polar coordinate system. Done in class

Graphing polar curves (Method I)

* See graph in class

Exercise 11.1.9 Sketch the curve $r = 4\sin\theta$.

Graphing polar curves (Method II)

Example 11.1.10 Sketch the curve $r = 1 + \cos\theta$ for $0 \le \theta \le 2\pi$.

Solution

Step I Graph of $r = 1 + \cos \theta$ in rectangular coordinates

Step II

Draw polar graph of $r = 1 + \cos \theta$, using above information. See class notes for the graph

 11.1_{8}

Draw polar graph of $r = \cos 2\theta$, using above information.

See class notes for the graph

Symmetries of polar curves

See explanation in the class to understand the following ideas.

 11.1_{9}

Graphing polar curves (Method III)

Method III

To use symmetry in Method I and Method II

Example 11.1.12 The graph of $r = 2\cos\theta$ was sketched in Example 11.1.8 by

using the following table of values

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
r	2	$\sqrt{3}$	$\sqrt{2}$	1	0	-1	$-\sqrt{2}$	$-\sqrt{3}$	-2

and the graph was

• Note: $r = 2\cos\theta$ is symmetric about polar axis (Why?) and for the values of θ from 0 to $\frac{\pi}{2}$ we get

• So we can complete the graph by using symmetry about polar axis and only using the values of θ from 0 to $\frac{\pi}{2}$ instead of using θ from 0 to π .

Example 11.1.13 The graph of $r = \cos 2\theta$ was sketched in Example 11.1.11 by using θ from 0 to 2π and the graph was

• Note: $r = \cos 2\theta$ is symmetric about pole as well as about polar axis and

• So we can complete the graph by using symmetries and above part of the curve.

11.1₁₁

Graphing polar curves (Important Exercise)

Exercise 11.1.14 Consider $r^2 = \cos 2\theta$ for $0 \le \theta \le 2\pi$.

This consists of two functions

$$r = \sqrt{\cos 2\theta}$$
 and $r = -\sqrt{\cos 2\theta}$.

a. Find symmetries of $r = \sqrt{\cos 2\theta}$.

Sketch $r = \sqrt{\cos 2\theta}$ by using symmetries in

- Method I
- Method II
- **b.** Find symmetries of $r = -\sqrt{\cos 2\theta}$.

Sketch $r = \sqrt{\cos 2\theta}$ by using symmetries in

- Method I
- Method II
- **c.** Do you get same graphs in Part (a) and (b)
- **d.** What is the graph of $r^2 = \cos 2\theta$.

11.1₁₃

Before moving on to the next slide

- See Sections 1 and 2 of the "Introductory notes for Matlab beginners".
- See the handout "Plotting graphs in rectangular coordinates using Matlab"
- See the handout "Plotting polar curves using Matlab"

Graphing polar curves $r = f(\theta)$ (using MATLAB)

Example 11.1.15 Use Matlab to plot $r = 2\sin 4\theta$.

Solution

Step 2

Use the following commands to get the graph

- >> theta=linspace(0,2*pi,100);
- >> r=2*sin(4*theta);
- >> polar(theta,r)

Solution

Step 2

Use the following commands to get the graph

- >> theta=linspace(0,2*pi,100);
- >> r=2*sin(5*theta);
- >> polar(theta,r)

Example 11.1.17 Use Matlab to plot $r = \sin\left(\frac{8\theta}{5}\right)$.

Solution

Step 1 Domain of θ

We look at
$$\sin\left(\frac{8(\theta + 2n\pi)}{5}\right) = \sin\left(\frac{8\theta}{5}\right)$$

 $\Rightarrow \quad \sin\left(\frac{8\theta}{5} + \frac{16n\pi}{5}\right) = \sin\left(\frac{8\theta}{5}\right)$
The smallest value of *n* for which
 $\frac{16n\pi}{5}$ is a multiple of 2π
is $n = 5$.

Step 2

Use the following commands to get the graph

- >> theta=linspace(0,10*pi,**300**);
- >> r=sin(8*theta/5);
- >> polar(theta,r)

Example 11.1.18 Use Matlab to plot $r = 2 + 4\cos\theta$.

Solution

Step 1 Domain

so $0 \le \theta \le 2\pi$

Step 2

- >> theta=linspace(0,2*pi,100);
- >> r=2+4*cos(theta)
- >> polar(theta,r)

11.1₁₉

Exercise 11.1.20 Use Matlab to plot the following graphs

1.
$$r = \cos\left(\frac{3\theta}{2}\right)$$

$$2. \quad r = 1 + \cos \theta$$

$$3. \quad r = 0.5 + \cos\theta$$

$$4. \quad r = 1.5 + \cos \theta$$

Important polar graphs

Lines

Exercise 11.1.21 Plot

- a. r = 4
- b. $r = 4\cos\theta$
- c. $r = -6\sin\theta$

11.1₂₃

Observe the following graphs of cardioids

Observe the following graphs

 $r^2 = 4\sin 2\theta$

Spirals

End of 11.1

Do Qs: 1-59