Learning outcomes

After completing this section, you will inshaAllah be able to

- 1. explain what is meant by anti-derivative of a function
- 2. find simple anti-derivatives and apply them to solve some equations involving derivatives

Finding antiderivatives using fundamental antiderivative formulas

Function	Antiderivative
$x^n \qquad (n \neq -1)$	$\frac{x^{n+1}}{n+1} + C$
$\frac{1}{x}$	$\ln x + C$
e^{x}	$e^x + C$
$\cos x$	$\sin x + C$
sin x	$-\cos x + C$
$\sec^2 x$	$\tan x + C$
sec x tan x	$\sec x + C$
$\frac{1}{\sqrt{1-x^2}}$	$\sin^{-1}x + C$
$\frac{1}{1+x^2}$	$\tan^{-1}x + C$

See the examples 4, 5, 6, 7 done in class

- To solve problems involving derivatives we need to use idea of antiderivatives
 - This naturally involves arbitrary constant(s).
- If some specific condition(s) are given we can use these to find value(s) of these constant(s).
- Hence, we get solution satisfying given condition(s).

See the examples 8, 9 done in class

End of 4.10