Learning outcomes

After completing this section, you will inshaAllah be able to

- 1. calculate limits of expressions involving trigonometric functions
 - a. specially using $\lim_{x\to 0} \frac{\sin x}{x} = 1$
- 2. perform differentiation of trigonometric functions

Practical techniques of computing limits of trigonometric functions

General idea

• Direct substitution

Like Section 2.5

• Using ideas like $\limsup_{x \to a} (g(x)) = \sin(\lim_{x \to a} g(x))$

See example 1 done in class

• If direct substitution gives $\left(\frac{k}{0}\right)$ form $(k \neq 0)$ then we look at the sign and get

the answer as ∞ or $-\infty$

Like Section 2.2

Use the limit $\lim_{x\to 0} \frac{\sin x}{x} =$

- It is important to make proper use of this limit
- We learn this by examples

See examples 2, 3, 4, 5, 6 done in class

Basic differentiation formulas for trigonometric functions

$$\frac{d}{dx}(\sin x) = \cos x$$

•
$$\frac{d}{dx}(\cos x) = -\sin x$$

•
$$\frac{d}{dx}(\tan x) = \sec^2 x$$

$$\frac{d}{dx}(\cot x) = -\csc^2 x$$

•
$$\frac{d}{dx}(\sec x) = \sec x \tan x$$

•
$$\frac{d}{dx}(\csc x) = -\csc x \cot x$$

See examples 7, 8, 9 done in class