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ESTIMATION OF THE TRACE OF THE SCALE MATRIX
OF A MULTIVARIATE T-MODEL UNDER A SQUARED ERROR LOSS

A.H. Joarder, G.K. Beg

1. INTRODUCTION

We consider the estimation of the trace of the scale matrix of the multivariate
t-distribution. The trace of the scale matrix in this case gives the total variation
of the component variables present in the population, and hence is important
in many statistical analyses including principal component analysis.

Unlike the normal distribution, the multivariate f-distribution is fat tailed
and hence important in modelling many real world data. It may be mentioned
that many authors have observed that the empirical distribution of rates of
return of common stocks have relatively thicker tails than those of the normal
distribution. Blattberg and Gonedes (1974) assessed the suitability of inde-
pendent #-distributions for stock return data. After a thorough investigation,
Kelejian and Prucha (1985) proved that uncorrelated ¢-distributions are better
able to capture heavy-tailed behavior than independent ¢-distributions.

The estimation of the trace of the covariance matrix (scale matrix) of the
multivariate normal distribution was considered by Olkin and Selliah (1977)
under a weighted squared error loss function. The present work is motivated
primarily by the work of Dey (1988) who considered the estimation of the trace
of the covariance matrix of the multivariate normal distribution under a squared
error loss function. He developed estimation strategies by shrinking eigenvalues
towards their geometric mean.

In particular, we assume N p-dimensional (p = 2) random vectors (not neces-
sarily independent) X, X5, - X having a joint p.d.f. (probability density
function) given by

I I —(v+Np)/2
| s |N/2 N -
EYRWYE 1*‘}72}’-‘1 -z - ) (1.1)
e

f(g y X 3"')3_5."):
1 2 N C(V,Np}ﬂ

where the normalizing constant C(v, Np) is defined by
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where x; = (%, Xy -ees 9_cpj,-)’, M is an unknown p x 1 vector of location param-

eters, 2 is a p X p unknown positive definite matrix of scale parameters and v
(>4) is assumed to be a known positive constant. Each p-dimensional random
vector Ki (7=1, 2, ..., N) has a multivariate #distribution with mean vector u
and covariance matrix vX/(v - 2), (v > 4) and may be denoted by

V A
gjf_Tp[u,mg), T

The tandomavectors Xy X, o Xy in the model (1.1) are uncorrelated for
any V> 4, but not independent unless v approaches infinity. The joint p.d.f. in
(1.1) represents the multivariate #-model; it has been considered, among others,
by Zellner (1976) in the context of stock market problems, and Lange, Little
and Taylor (1989).

We now propose a class of estimators for the trace of the scale matrix of the
multivariate #-distribution. It may be remarked that we are estimating the trace
of the scale matrix instead of the trace of the covariance matrix since the scale
matrix X determines the covariance matrix up to a known constant v/(v - 2).
Let 0 = tr(2) be the trace of the scale matrix X. In estimating & by an estimator
0, we consider the loss function

L(S, & = (5 - 8)? (1.3)
and the risk function
R(8, 8 =E[L(S - 8] (1.4)

where & is any estimator of 8. In particular, consider the following two classes
of positive estimators of &= tr(2):

usual estimator & = Gt 4 )

proposed estimator 5= ¢y tr(4) - cp | Al (1.6)

where ¢, is a known positive constant, ¢ is a constant so that the proposed
A l\T — —
estimator & is positive, and ézZ(&i - X)(X; - X) is the sample sum of
j=1 .
product matrix (Wishart matrix) where X =(X,,
fsln D i
In this paper we prove dominance theorem that the proposed estimator &
dominates the usual estimator & of 8= tr(X) in the sense of having smaller risk
16

R(5, =E(6-82<R(3 8=E@6 - 8?.

Exact expressions for the risk functions of the estimators are derived. Rela-
tive Risks of the estimators are compared with some numerical examples.

N
2,...,XP)I,XE' ZZXE,?/N,
j=1

<
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2. SOME PRELIMINARIES

We need some lemmas on the expectation of the Wishart matrix based on a
sample (not necessarily independent observations) from the multivariate #-dis-
tribution which will be required in the sequel. The proofs of these lemmas due
to Joarder (1998) are adapted here for the sake of completeness.

The p-dimensional random vector }_(j in model (1.1) can be represented by the
scale mixture of the multivariate normal distribution NP(LL, 72 %) and the distri-
bution of a univariate random variable 7 where 72 has a gamma distribution
with mean 1 and variance 2/v i.e. XI‘ 7~ N(u,7? 2). It follows that given 7, the

Wishart matrix having p.d.f in (2.1) has an usual Wishart distribution 7.e.
Alt~ W, 722, n=N-1. (2.1)
The p.d.f. of Al tis given by

i e s ( i g)
Alp=1= £ —=tr(Z
f(Al7) 27T (o2 exp| -5 (2 4/7°) ),

where A > 0, n=N - 1 2 p and I'(#/2) is the generalized gamma function
defined by

I ()= ?:P(P_”“fl Mo -i+1)[2),  a>(p-1)2. (2.2)
i=1

It can be easily shown that

T, (n2+k '
» (7l )\T2§\f@72§, n+2k>0. (2.3)

k — ok T —
E(Al* Al 7) = 2%(n + 2k) I (#[2)

In view of the mixture representation given by (2.1), it then follows that

ElAl*A) =E[E(AIF Al 7]

: I (n/2+k)
i k Eoaslmiiay o s
= E| 28 (n + 2k) RETE) " = rg}
I, (n]2+k)

k 2kp+2
T (2 |2 SR

=D 2k

An exact expression of the above expectation can then be found by noting
that for any integer r»

72 F(V/2—f/2)

E(ai=lyei = e

Vi (2.4)

The result is summarized in the following lemma.
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Lemma 2.1. Let A have the mixture representétion given by (2.1). Then for any
real number %4 and any positive number v satisfying the conditions 7 + 2& > 0
and v > 2(kp + 1), the following result holds:

v/2 kp—1) n/2+é)|2‘

k — kol
E(Al* A) = v (n/2 + k) 73 AR

It follows from Anderson (1958, p. 161) that for the Wishart matrix A = ((a;1))
satisfying (2.1) we have

E(a;a5 | 1) = n3(120;) (t20y) + 2n(120,)2 (G, k=1, 2, ..., p)
so that

p p p
El(tr A)?| 1] = > E(a3)+2 > X Elazay)
i=1 i(<k)=1 k=1

P p P
= 7|’y 0} +2n) 02 +2n? z Zcrnaéﬁré%n X, 2Bl

i=1 i=1 il<k)=1 k=1 i(<k)=1 k=1
Rearranging, we have
[(tr A)?| 7] = #2(tr 72 D%+ 20 tr(1? 3)2 . (2.5)

Recalling the mixture representation of the Wishart matrix given by (2.1),
we have

El(tr A)*] = E[El(tr A)?| 7]] = E[#%(tr 72 2?2 + 2% tr(z? X)?]

and then by the use of (2.4), we have the following lemma.

Lemma 2.2. Let A have the mixture representation given by (2.1). Then for
v>4, we have

7 2 2
El(tr A)°*] = A=2/V)A=4V) [#(tr ) + 2t(Z7)].

The reader may be referred to Joarder and Ali (1992) for many other useful
expectations on Wishart matrix based on the multivariate model. '

3. THE MAIN RESULTS

The main results are presented in this section in the form of some theorems.
Theorem 3.1. Consider the multivariate £-model given by (1.1). Then the pro-
posed estimator & defined by (1.6), dominates the usual estimator &= cq tr(4d)

in the sense of having smaller risk under the risk function given by (1.4) for any
¢ satisfying
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desi0 G.1)
(w2 y-4) Ln2+1p)

where d = (CO > 7 ] 2+ 2]p) @2

n=N-12p with ¢, < (1 - 4/v)/(n+2[p),

ol | B e ) (3.3)

where d is given by (3.2) with ¢, > (1 - 4/v)/(n + 2[p).

Proof. Let the risk functions of the two estimators be defined by R(6 S; ¢) =
E(S - 8)? and R( 5 0) = E(5 — 8)? respectively. The risk difference of the

estimators can be written as

R(8,8;¢)—R(8,8) = E[62 - 62 — 28 - §)8]
so that by virtue of Puis e 2cp3 | Al 1p 4 (cp)? | i\z/p, we have

~

R(6,6;c)— R(S, )= E[—Zcpg\é /e +(cp)? |é|2/P —2(—Cp|é]1/p )81

= pE[—Zcoc|é|I/ptr(é)+ pc? | AP 4208 | AP

where &= §/p is the arithmetic mean of the eigenvalues &, &, ..., §, of the
scale matrix X.
The k-th moment of the generalized sample variance | A| is given by

= L (nf2+Fk
Al = D2=t0) H22 D) oy

2k
— V—iepr(vlz) Fp(n/2) gl Vekerd)

(see Joarder and Ali, 1992). Then by virtue of Lemma 2.1, we have

S N I, (n/2+1 —
R(é,é;c)—R(a,a):-zcocp[ 2/ ) »(n/2+1/p) : g}

I-2/v)A-4[vip  T,(n[2)

o Ln2+20p) ;] -
+2p[(1—2/v) T, (n]2) s|Ps

+(cp)2{ = Lo e lp) 521

(1-2/v)(1-4/v) I,(n/2)
which, after simple algebraic manipulation, reduces to

4(p EY? T, (nf2 +2/p)

2
(L~2vi=4/v) L (n2 (c®=dec&/) (3.4)

R(S,8;¢)-R($,8) =

where & is the geometric mean of the eigenvalues of the scale matrix X and d
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is given by (3.2). In order that 5 dominates &, it is sufficient to prove that the
risk difference R(5 d; ¢c) - (5 0) is negative which is true if

d(5/5)<c<0, or 0<c<d(g/£).

The above conditions involve 5 and § which are unknown quantities. By the
well-known arithmetic mean and geometric mean inequality & = &, it then
follows from (3.4) that & dominates & if d < ¢ < 0, or 0 < ¢ < d where d is given
by (3.2). However,

degl) if and only if ¢, < (1 - 4/V)/(n + 2/p),
while d > 0 if and only if ¢, > (1 - 4/v)/(n + 2/p) .

Hence the proposed estimator & dominates the usual estimator & if ¢ satisfies
the conditions mentioned in the theorem.

It may be remarked that if ¢, = (1 - 4/v)/(# + 2/p), then d = 0. In this case it
is seen from (3.4) that the risk dlfference is positive so that there exists no
proposed estimator o dominating the usual estimator 8. The risk difference
vanishes only if ¢ =0 in which case the two estimators coincide.

The risk function of the usual estimator is given by

R(3, 8 =E(S - 8% =c? El(tr A)?] - 28¢, tr(E(A)) + & .
The expected value of the Wishart matrix is given by
E(A) =E[EA| 9] =E@#r2D) =X/ - 2/v).

An exact expression of the risk function of the usual estimator can then be
found by using Lemma 2.2. Consequently, the risk function of the proposed
estimator follows from (3.4). These results are summarized in the following
theorem.

Theorem 3.2. For v > 4, the risk functions of the usual estimator and the
proposed estimator are given by

2 ne, ne, 5 ch(f 2
SelE [1—2/»'(1—4/1/ 2)“}(“’2) F a2 w4y ME)
and
. 4p21 PP T,(n[2+2[p)( , cdtr(Z) -
;c) = = = =) |y R(§
R(4, 8;¢) A=2/a=4/V _ T,in2 ¢ NG +R(6,0)

respectively, where ¢, and ¢ are defined in Theorem 3.1.
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4. RELATIVE RISK ANALYSIS WITH NUMERICAL EXAMPLES

To compare the risk of the two classes of estimators 5 and &, we use the
Relative Risk (RR) defined by

RR(oD gt 0iE) (4.1)
R(6,0)

where 0 < RR(8: &; ¢) < 1 for the choices of ¢ given by Theorem 3.1. The RR
in (4.1) is a parabola in ¢. Theorem 3.1 provides range of values of ¢ where the
proposed estimator 5 dominates the usual estimator & = ¢y tr(A). The Maximum
Likelihood Estimator (MLE) and the Unbiased Estimator (UE) of 0 are given
by &=c, tr(A) for ¢,=1/(n+ 1) and ¢, = 1/n respectively (Fang and Anderson,
1990, p. 208). Thus for a fixed value of # (equivalently of ¢,), RR in (4.1) poses
a problem of minimization of a parabola in ¢ on a restricted set {¢: d < ¢ < 0}
or {¢: 0 < ¢ <d}. However, neither of these two sets is closed and consequently
we may not have an optimal solution for ¢. Note that the unrestricted minimi-
zation occurs at

_cd
m 5 9
S
but this is not usable in practice since neither c'j nor 3; is known.
It is interesting to know the behavior of RR for different values of §/§ For
the choice of ¢y=1/(n+ 1), the Relative Risk given by (4.1) compares the

proposed estimator with MLE. Whenever é/é >2andd>0wehave0<c<d<c,
For example, if p=4, v=35, n=10 (so that d=0.1841907 > 0) and

oy 12 i Gk
12
5o 8 = 2 ,
- 7 9 & =l
O

then E/g=2.229844 and ¢, =0.2053583. The graph of RR versus ¢ for this
case is shown in figure 1.

If 1< é/E<2andd>0, then0<c¢,<d. For example, if p=4,v=5,n=10
(so that d=0.1841907 > 0) and

30

1™
[

; (4.2)

b W 00 N
Y

1
2
L
5

then E/J,‘: 1.590451 and ¢,,=0.1464731. The graph of RR versus ¢ for this

case is shown in figure 2.
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Figure 1 - Relative Risk (RR) versus ¢ (p=4, v=5, n=10 and E/é =2.229844),

The behavior of RR versus ¢ for X given by (4.2) with different values of #
is shown in figure 3. The proposed estimator performs better, as expected, for
increasing 7.
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Figure 2 - Relative Risk (RR) versus ¢ (p=4, v=5, »=10 and E/é’: 1.590451).
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1.20 —

RR

Figure 3 - Relative Risk (RR) versus ¢ (p=4, v=35 and »=10, 15, 20).

If we have the prior information that &/ is closer to 1 then ¢ = df2 is an
optimal choice while if &/& is closer to 2 then ¢ = d is an optimal choice.
Theorem 3.1 provides choices of ¢ whenever no prior information on &/ is
available. It is observed that the behavior of RR for any dimension (p = 2) is
similar. We also note that the behavior of RR for the unbiased case (¢c; = 1/n)
is similar to that of MLE described above. '

5. CONCLUSION

We remark that the gain we get from using the proposed estimator is a
smaller mean square error. This is because of the modification made to the
usual estimator by introducing a correction term which involves a choice of ¢
depending on # =N - 1, p and v. It is thus easy to calculate the value of ¢ once
the sample is selected, as the value of v is assumed to be known. It may be
remarked that as v — oo, Theorem 3.1 of the present paper specializes to
Theorem 2.3 of Dey (1988). Since the multivariate #-model given by (1.1)
converges to the joint p.d.f. of N independent N,(u, 2) variables as v ap-
proaches infinity, the present work may be viewed as a generalization of the
corresponding work of Dey (1988).
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RIASSUNTO

Stima della traccia della matrice di scala per il modello t multivariato in presenza di una
funzione di perdita quadratica

Si considera il problema della stima della traccia della matrice di scala per il modello
¢ multivariato. La tecnica di stima ¢ sviluppata considerando una funzione di perdita
quadratica. Vengono derivate le condizioni che rendono lo stimatore proposto migliore
di quello solitamente utilizzato, ed inoltre viene calcolata I'espressione esatta per le
funzioni di rischio associate agli stimatori. Sono presenti infine alcuni esempi numerici.
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SUMMARY

Estimation of the trace of the scale matrix of a multivariate t-model under a squared error
loss

The trace of the scale matrix of the multivariate #-distribution is considered for
estimation. The estimation strategy is developed assuming a quadratic loss function.
The conditions under which the proposed estimator outperforms the usual estimator
are derived. Exact expressions for the risk functions of the estimators are also derived.
Numerical examples are considered as well.



