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0. INTRODUCTION

All the rings considered in this paper are integral domains, i.e. commutative rings with

Jaffard domain if dim A = dim,A [2). The previous property is not a local property and

| identity and non zero-divisors. Given a finite dimensional ring A , we say that 4 isa
’ thus we say that A is a locally Jaffard domain if Ay is a Jaffard domain, for each prime

‘ ideal p of A . Noetherian domains and, in the locally finite dimensional case, Priifer

o L | Dekker Lect. Notes Pure Appl. Math. 153 (1994) 111-130.

it A ) domains, stably strong S-domains and universally catenarian domains are examples of

i locally Jaffard domains. As a matter of fact, the locally Jaffard domains coincide with the
rings satisfying the inequality formula [3], [4, Théoréme 1.5, [16, Lemme 1.4]. Besides

‘ . _ ; the locally Jaffard domains, further examples of Jaffard domains are given by the

In [10] D. Costa, J. L. Mott and M. Zafrullah introduced the rings o_f the type

D(S) := D + XDi[X], where D is an integral domain and § is a multiplicatively closed

: arising from the pullback diagrams of a special type (cf. [2], [3], [7], [9], [13] and [16] ).
subset of D . If §:=D \{0} then D) =D + XK[X], where K :=qf(D) (= quotient

|
J , : polynotnial rings with the coefficients on a Jaffard domain and by some class of rings

i _ ! These authors were supported in part by a NATO Collaborative Research Grant CRG N, 900113
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| field of D ). Some properties of the prime spectrum of D) were investigated in [10] ,
even if the problem of an exact determination of dim D() was not settled in the general
case. In [13], the authors were interested in a more general situation concerning the rings
DG =D + Xy XD X, X, . After proving a formula for the Krull
dimension of D(S,7) [13, Theorem 3.2], they showed that D(S, 1) is a Jaffard domain
with dim DG 0 =r+ dim D if and only if D is a Jaffard domain [13, Theorem 3.5].

In the present work, we investigate an even more general construction, considering the
ring R:=A + XB[X] = {f< B[X] I A0 e A}, where A C B is a ring extension, X is
an indeterminant over B . Thering R is a particular case of the constructions B, I, D

introduced by J.-P.Cahen in [9] (cf. also [12]).

The ring Int(B, A) := {feB[X] | flAAYC A} isasubring of A + XB[X] and a deeper

knowledge of the properties of the rings of the type A + XB[X] may have some
interesting consequences for the theory of the rings of integer-valued polynomials [1] .

In Section 1, we study the structure of the ﬁrime spectrum of R =A + XB[X],
clarifying the relation among Spec(R) and the spectraof A and B[X]. Furthermore,
we will provide upper and lower bounds to htp XB[X] by means of trdeg. 4 B.

In the second section, we will take care of the theory of the dimension and of the
transfer of the related properties in the constructions A + XB[X] . We will generalize
some results previously established for the domains of the type D + XK[X] and D +
XD,[X]), where K is a ficld containing D and § is a multiplicative subset of D . We
will prove, among other facts, that R = A + XB[X] is a Jaffard domain and dimR =1+
dim A if and only if A is a Jaffard domain and deg.ir, B=0.

Section 3 is devoted to the investigation of several examples showing the limits of some
of the results previously established. We will show also that some of the results, holding
for the constructions D + XD([X] and for D + XK[X], can not be extended in their
classical form to the general construction A + XB[X] . We will take this opportunity to

describe a new class of Jaffard domains, different from all the known classes.
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1. THE PRIME SPECTRUM

We start by establishing some links between the prime ideals of R =A + XB[X] and

those of A and B[X]. The following lemma is a consequence of some general theorems

concerning the pullback constructions [12] .

LEMMA 1.1. Let A C B be an extension of rings, X is an indeterminant over B
and R=A +XB[X].

(a) The ideal XB[X)] is a prime ideal of R and R/XB[X] is canonically isomorphic
to A . From a topological point of view, the map g : Spec(A) - Spec(R),
corresponding to the canonical projection g : R+ A , is a closed embedding and it inditces
an order-isomorphism of Spec(A) onto £ = {pe Spec(R) | XB{X]1< p},
p |- P + XBIX). In particular, £ is a subspace of Spec(R)} stable under
specialization, _ ' . ; _

(b) Theset $={X" | n=0} is a multiplicatively closed subset of R and of B[X]
such that §-1R = §-1B[X] =B[X, X'ljl Moreover, bf contraction, we obtain an order-
isomorphism {3.e Spec(B[X})I Xedl} - D = [BeSpec(R)l XeBY, and thus
W s a subspace of Spec(R) stable under generalfzation. _ _

(¢) The spectral space Spec(R) is canonically homeomorphic to the amalgamated sum
of Spec(A) and Spec(B[X]) with respect to Spec(B) .

PROOE. (a) The map g:R—>A, X |- 0, is a surjective homomorphism with
Ker(g) = XB[X] . The:.refore R/XB[X] is isomorphic to A and XB{X] is a prime ideal
of R.. It is clear that the continuous map 9g : Spec(A) — Spec(R) is closed and injective.

(b) Since S is a multiplicatively closed subset of R then S_'IR =A[X-1] +
S-1(XB[X]) = S-1(B[X]) = B[X, X-1] = B[Z] . We deduce easily that D,
Spec(B[X, X1]) and {Be Spec(B[X])| Xe R} are bijectively equivalent,

(c) is a consequence of the general properties of the pullback constructions, cf. [12].
]
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For the constructions D + XK[X] and D + XDg[X] , it is known that ht XK[X] =
ht XDglX] =1 ([10] and [13]; see also Step .1 of the proof of the following Lemma
1.3). Nevertherless, the previous result does not hold in the general case R =A + XB[X] .
More precisely, we will see later (Examplel.5) that, foreach n2 1, there exist A C B
such that hiz XB[X] =n. Next goal is an approximation of the height of XB[X] inside
R.

THEOREM 1.2, Let R=A + XB[X], N:=A \ {0} andk := of(A) .
(a) htg XB[X] = dim N-1B[X] = dim (B[X] ®,k) .
(b) 1< htg XB[X] <1 +1trdegyB.

In order to prove this theorem, we need the following lemma:

LEMMA 13. In the same situation of Theorem 1.2,
htg XB[X] = 1 + Sup{htpx) q[X] | geSpec(B) and q N A =(0)} .
‘ PROOF, Step1: Ifforeach 'quSpec(B.)'\ {(0}} we have that 0 N A # (), then
htg XB[X]=1. - _

As a matter of fact, in this siiuation we have N°1B = éf(B) =:L. We deducé that
N“lR =N- IA +XN1B[X) =k + XL[X] Therefore htg XB[X] = htN 1p XN 1B[X] =1
since dim AR = 1 [2, Proposition 2.15]. ‘

Step 2 : There exists a non zero prime ideal e Spec(B) such that g NA= .

First' at all, for each q € Spec(ﬁ) éuch that q ﬂ‘A =(0) wehave qIX]N R C
XB[X]. As a matter of fact, ( (q[X]+ XB[X1)/XE[X])N A = (0) . hence
(qIX] +_XB[X}) NR=XBXINR= ;YB[X] .th‘us q[X] N R C XB[X] .

If § «SpecB) is such that q N'A = (0) , then we obtain htgpy; q[X] =
htz (q [X] ﬂ:R) .(L;ammét. L1). Therefore, htp XB[X] 21 + htgrx) q[X] .

Llet McB,cC c B, € XB[X] be a chain of prime ideals realizing the heiéht of
XB{X] ‘insidé'R‘. We claim that, for each i€ {1, ...,n), XeB,. If not, we would
héve XR = XA + X2 B[X] C B; € XB[X], hence X2B[X] C B; € XB[X] and thus
v (X2B[X]) = B, =XB{X] inside R : a contradiction. By Lemma 1.1, the previous

chain lifts to achain (0)C D, C ... C &), of the same length inside B[X], hence

A + XBIX] Rings s

ht B, =ht D, =n. By [15], htgx) £, canbe realized by a special chain (0) C

c O C..Cc iy € D, of prime ideals of B[X]. Let g := 1, N B, then either
g[X] =8, or g[X]=%,. Inany case, we have (0) C o NA=N.,NBNA=
N, NRNA=B,NACXBIX]NA=(©).

If q is not maximal among the prime ideals P of B such that p N A =(0), thenlet
g'e Spec(B) such that & q'and Q' N A =(0). We deduce that q[XIN R C
Q'X] N R € XBIX], n-1=higy qiX]I'=htz QIXINR) and n < hipge o'1X] =
= htp (0'[X] N R) < htg XB[X] =n + 1. Therefore, htprx) q'[X]=n and bty XB[X]
=2 + higrx) q[X] = 1 + htppn 9'IX} T

Let g be maximal among the prime ideals p of B suchthat p N A =(0).
Necessarily we must have ([X] =X, : otherwise, q{X] & i1, implies the existence of
the following chain of prime ideals ¢[XINR < D.,N R C XBX]. Therefore, we
obtain the chain of prime ideals (0} € (2, N R)/([X] N R) € (XBX])/(q[X] N R)
inside the integral domain R/(g[X] N R) (isomorphic to A +X(B/q)[X]). Because of
the maximality of o , foreach g'eSpec(B/q)\ {0}, we getthat Q' N A== (0), hence
we ate in the situation of Step 1. We deduce that htg XB/0[X]=1, hence R':=A+
X(B/0)[X]. We reach a contradiction, since (XB[X])/(q[X} N R) is isomorphic to
X(B/0)[X] and ht( (XBIX])/(q[X] N R))22. Therefore we have that q[X] = 0,
and thus hip XB[X] =1 +n=1+htgx) Qo= 1+htgpg qX] . -

We proved that htg XB[X] < 1 + Sup{ htppxy q(X] | qeSpec(B) et q N A=)}

from which the conclusion follows easily.

PROOF OF THEOREM 1.2. (a) We considér the ring N-IR =N-1A +
XN-1B[X] = k + XN-1B[X] . It is obvious that, for each (e Spec(N-!1B), we have that
g Nk=(0). By Lemma L.1 htg XB[X] = hty-1p XN-1B[X] and, by Lemma 1.3, it
follows that hty-1z XN-1B[X] = 1 + Sup{ hty-1px; d[X] | qeSpec(N-18)} =
dim N-1B[X] .

(b) We have that k¥ € N-1B[X]C L(X) = qf(B[X]) . By [14, Theorem 20.9],
dim N-1B[X] < w.deg.p L(X) = 1 + tr.deg.4 B, from the statement (a) the conclusion

follows.
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We notice that Theorem 1.2 recovers, as a particular case, some of the known resulis
concerning the domains of the type D + XK[X] et D + XDg[X], where K is a field
containing D and § is a multiplicatively closed subset of D . In the following Example
1.5 we will apply the full strength of Theorem 1.2 for computing the height of XB{X]

inside A + XB[X], where B isnot a field nor a localisation of A .

COROLLARY 14, Let AC B, L:=qf(B) and S be a multiplicatively closed
subset of A. Set R :=A +XB[X], T:=A + XLIX] and A®):=A + XAgX].

(al) If qf(A) € B, then htp XB[X] = dim B[X] .

(a2) hty XL[X]=1.

(b)) If AC B is an algebraic extension of integral domains, then htg XB[X]= 1.
- (b2) hty XAg[X]=1.

PROOF. In order to prove (al) it is sufficient to notice that qf(4) C B implies that
N-1B =B ; (bl} follows by Theorem 1.2 (b).

EXAMPLE 1.5, For each integer n 2 1, there exist two integral domains A C B
such that htz XB[X}=n, where R :=\A + XB[X] .

Let A :=2Z , B:=0[Xy, .., Xp-1] . By Corollary 1.4 (al), we obtain that
hig XB[X] = dim Q[X;, ..., Xy 1][X]=n .

The following example shows that, for a domain of the type R = A + XB[X],
hig XB[X] can describe all the integer values between 1 and 1+ trdeg.4a B. In

particular, the boundaries established in Theorem 1,2 may not be improved.

- EXAMPLE 1.6. Let deN and te {1, .., 1+d} , then there exists an extension
of integral domains A € B such that tr.deg.4 B =d and hty XB{X] =t, where R :=
A + XBiX].

As a matter of fact, let % be a field-and let X, Xy, .., Xq,1, ¥, ... ¥4 be

indeterminants over k£ . Set A:=k and.B :=k(X|, ..., X401} ¥, ..., ¥yl - Then,
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“tr.deg.q B = trdegy k(X o Xars Yoo oy Ye) =4,
htp XB[X] = dim B[X] = dim kX, ..., Xg:i, )[¥1s oo Yiq] [X]1 =t (Corollary 1.4
(aly). - '

2. Krull and valuative dimension of A+XB[X]

In this section we establish two of the main results of the present work. If AGC B isa
given extension of integral domains, then the first one gives an approximation of the Krull
dimension of A+XB[X]. In the second result, we determine the valuative dimension of R
= A+XB[X] by means of dim,6 A ahd tr.deg.y B. As a consequence, we will be able

to study the transfer to R of the Jaffard and locally Jaffard properties.

THEOREM 2.1. Let R:=A+XB[X], N:=A\(0} and k:=gf(A).

(a) Max{dim N-1 B[X] +dim A ; dim B[X]} < dimR £ dim A + dim B[X] ;

() If kC B then dim R=dim A + dim B{X] .

PROOF, . (a) We know.that htp XB{X] + dim R/XB[X] < dim R-. Since
R/XB[X] ¥ A (Lemma 1.1) and htzp XB[X] = dim N-1B[X] (Theorem 1.2), then
dim N-1B[X] + dim A < dim R. Furthermore, $-1R = B[X, X"1] (Lemma 1.1) where
§:= {Xn| n>0}.. By [2, Proposition 1.14], dim B[X, X-1] = dim B[Z] = dim B[X] .
We deduce that dim B[X] < dim R, which implies the first inequality.

Let By=(0)<C B, C .. C B, be achain of prime ideals of R which realizes the
dimension of R . Let r be the maximum integer of {1, .., n} such that X does not
belong to B, hence for each m <r, X does not belong to B, . By using the order-
isomorphisms .{£. € Spec(B[X]) | Xe D} -0 = (B e Spec(R)| Xe B} and
Spec(d) - £ = {B e Spec(R) | XB[X]1< B} (Lemma 1.10), we deduce that n-r<
dim A and r<dim B[{X]. Therefore, . n=dim R < dim A + dim B[X] .

) If kCB , it is clear that; for each ge Spec(B), g N A =(0). By Lemma 1.3 we

deduce that htg XB[X] = dim B[X] . The conclusion follows easily from Theorem 1.2

and from the point (a) . N
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For the constructions D{S) := D+XD[X], it has been proved in [13, Proposition 3.1]
and in [10, Theorem 2.6, Corollary 2.9] that dim D < Min{dim D[X]; dim D +
dim D,[X]} . Example 3.1 shows that an inequality of the same type does not hold for the
general constructions of the type A+XB[X] . More precisely, we will construct a domain
R =A+XB[X] such that dim R > dim A[X] > dim B{X], with qf(A) = gf(B) (hence,
dim R = dim A + dim B[X] , Theorem2.1. (b)). Furthermore, Example 3.1 shows that

the double inequality of Theorem 2.1 (a) may be strict, with dim A[X] < dim R and
irdeg.g B=0. |

‘COROLLARY 2.2. Let D be an integral domain, K its field of fractions and 8 a
mulsiplicatively closed subsetof D .

(a) dim D+XK[X] =1 +dim D ;-

{b) Max{1+dim D ; dim Dg[X]} < dim D+XDg[X] < dim D + dim D,[X] .

PROOF.{a)} (respectively, (b) ) follows fromi Theorem 2.1 (b) (respectively from
Theorem 2.1 (a)). 0 -

THEOREM 2.3. Ler A C B be two integral domains and R = A + XB[X] .

(a) dim,R = dim, A + tr.deg.4 B +"\1 .

(b) The following statements are equivalent :

(i) A is a Jaffard domain and qf(B) is an algebraic extension of qf(A) ;
(ii) R is a Jaffard domainand dim R=dimA+ 1.
PROOF. (a) We use induction on d := tr.deg.4 B.
Set L :=qf(B) and k := qf(A) .

Stepl: d=0, ie.. L is an algebraic extension-of k. We have that A[X]C R C
B[X] and L(X) = gf(B[X]) = qf(R)} is an algebraic extension of &(X) = qf(A(X]). By
[2, Definition-Theorem 0.1], 1 + dim,A = difn_,,A[X] = Sup{dim V | V isa L(X)-
valuation overring of - A{X] } 2 dim, R = Sup{dim V | visa valuatioﬁ overring of R} .
Let V bean L-valuation overring of A such that dim V=dim,4A andset T:=V +

XL[X] . The integral domain T is cleaily an overring of R . We deduce that dim, R 2
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"dim T=1+dim V [2, Proposition 2.15], [10, Corollary 2.10], and thus dim,R = 1+

dim, A .

Step 2: d=trdeg.4 B=1. Let ye B be a transcendental element over & "(its
existence follows from the fact that L = gf(B)). We consider the integral domains R[y] =
Aly] + XB[X] and R[y-}]=A[y -1+ XB[y "!|[X] . In this situation, tr.deg.4py B=0
and also tr.deg.4y -1 B[y '] =0 since tr.deg 4 Aly*11=1. By Step 1, dim, R[y] =
dimyA[y] + 1 = dim,A +2 and dim,R[y 1] = dim,A[y "1] + 1 = dim, A + 2.
Moreover, every overring of R is a valuation overring of R[y] or Rly "'}. We deduce
that dim, R = Max{dim, R[y] ; dim,R[y-1]} =dim,A +2.

Step 3: d =degitry B 2 1. We suppose that, for A’ C B’ such that r =
deg.tr.,gB'<d -1 then dim,R’'=dim,A'+ 1+ 1, where R":= A"+ XB[X] . Let
ye B be a transcendental element over &, then tr.deg.afy) B = tr.deg.apy ' Bly 1] =
d - 1. With the same notation of Step 2, the inductive hypothesis implies that dim, Ry] =
dim, A[y] +(d- 1) + 1 =dim,A +d + 1 and dim, R[y 1] = dim, A[y-]+({d-1) +1=
dim,A +d + 1. Asin Step 2, we have dim, R = Max{dim, R[y] ; dim, R[y -1} =
dim,A + d + 1. This completes the proof of (a) . :

(b) (i) = (ii) dim,R=dim,A +trdegy B +1

=dimA + 1, by hypothesis
=dimA + l?tR XB[X], by Corollary 1.4 (b)
<dim R , by Theorem 2.1 (a)
< dim, R,
thus R isa Jaffard domainand dimR=1+dimA.

(i) = () dim,R =dim,A +d+ I=dimR=1+dimA , hence we deduce that

dimyA =dimA and d=0. Thercfore, A is a Jaffard domain and qf(B) is an

algebraic extension of gf(4) .1

Among the applications of Theorem 2.3, we recover some "classical” result concerning
the intégral dotnains D + XDg[X] and D + XK[X] (cf. [10]) proved in [2, Proposition
2.15 and 2.16], [7, Proposition 2.11 and Corollary 2.12] and [13, Proposition 3.4 and

Theorem 3.5 (a)]:
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COROLLARY 24. Let D be an integral domain, § a multiplicatively closed
subset of D and K = qf(D).

(a) dim, D + XDg[X] = dim, D + XK[X] = dim,D + 1 ;

(b) D is a Jaffard domain if and only if D ¥XK[X] is a Jaffard domain ;

(c) D is a Jaffard domain if and only if D + XDg[X] is a Jaffard domain and
dim D + XDg{X] =dimD+1. 1

COROLLARY 2.5, Let A be an integral domain having k as its field of fractions
and let L be q field extension of k. Set R=A +XL[X].

(a) dim, R =dim, A +trdegp L+1,

(b) R is a Jaffard domain if and only if A is a Jaffard domain and L is an algebraic

extensionof k. 1

It was proved in [2, Proposition 2.16 (b)] that if A C B and if qf{4) = qf(B), when
A is a Jaffard domain, then R =A + XB[X] is also a Jaffard domain and dim R = dim A
+ 1. The following corollary establishes, among other facts, that the converse holds as

well (cf. also [2, Remark 2.17]):

COROLLARY 2.6. Let A C B be an extension of integral domains with the same
Sield of fractions. Set R :=A + XB[X] .

(a) dim,R =dim,A +1,

(b) A is a Jaffard domain if and only if R is a Jaffard domain and dim R = dim A +
A

Lastly we have:
COROLLARY 2.7, Let A C B be an extension of integral domains such that

Qf(A) € B. Set R:=A + XB[X]. Then, R is a Jaffard domain if and only if A is a
Jaffard domain and dim B{X] =1+ trdeg.4 B .

o S b S S e M
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" PROOF. By Theorem 1.2 (b), Lemma 1.3 and Corollary 1.4 (al), we deduce that
htg XB[X] = 1 + Sup{ht q[X] | oe Spec(B) and q N A =(0) } = dim BIX]< 1+
tr.deg.4 B . Theorem 2.3 (a) and Theorem 2.1 (b) lead to the conclusion, since

dim, R - dim R = dim,A - dimA + (I +d- dim B[X]). }
In Section 3, we will give several examples showing the limits of the previous results.

THEOREM 2.8. Let A C B be an extension of integral domains and let R =A+

XB[X] . We suppose that A is a locally Juffard domain. The following statements are

equivalent :
() BIX] is locally Jaffard and hig XBIX] =1 + trdeg.4 B ;

(i) R is locally Jaffard.

In order to prove this theorem we need the following.lemma (cf. also [2, Corollary

L.16]):

- LEMMA 2.9. Let B be an integral domain, then B[X] is locally Jaffard if and only
if B[X,X-] is locally Jaffard.

PROOF. We suppose that B[X, X-1] is a locally Jaffard domain. Since B[X, X1]
is integral over B[X + X-1], forcach o< Spec(BIX + X)), if T:=@BX+X1]\q),
then 7-1B[X, X-1] is integral over T-B[X + X1 =B[X+ X'l]q . Now B[X,X1] is
locally Jaffard, tﬁen B[X + X1 is the same [2, Proposition 1.1 and Proposition 1.5
(a)]. Since B[X + X1] is isomorphic to B[X], then B[X] is also locally Jaffard and

the lemma is proved.

PROOF OF THEOREM 2.8.
(i) = (ii). Let A and B[X] be locally Jaffard domains and htg XB[X] = 1+

tr.deg.4 B, we want to prove that, for each B & Spec(R) , Ry is a Jaffard domain. For

such a prime B two cases are possible :
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Case 1: X e B . There exists P € Spec(d) such that B =p + XB[X] (Lemma
1.1 (2)). Itis easy to verify that Rp =A, + XT"1B[X], where T'1 := R\ (p +XB[X]) .
We have that Ay + XBp[X]. € R € Ay + XL[X](xy, with By :=(AYp)'B and L=
qf(B), and we notice that all these rings have the same field of fractions. By the previous
remarks, we deduce that :

* dim, (Ap + XBy[X]) = dim, Ap + tr.deg.g B + 1 (Theorem 2.3 (a));

* Ap +XL[X](x) is the pullback of the inclusion Ay — L with respect to the
canonical projection L[X]x)—>L.
By [2, Theorem 2.6], dim, (Ap + XL[X](X)) =dim, Ay +dim, LIXl(x) + tr.degy L =
dim,Ap + 1 + tr.deg.4 B. On the other hand, dim Ry = htz B = htg(p + XB[X]) >
hty p + hig XB[X] = dim Ay + tr.deg.4 B + 1 = dimy Ay + tr.deg.4 B +1 = dim, Ry ,
thus Ry is a Jaffard domain.

Cose2: Xe B. Set §:={Xn| n>0}. ThenSN B =@ and Ry = (§R)g-1p
[14, Corollary 5.3}. On the other hand, $-1R = $-1(B[X]) = B[X, X' (Lemma 1.1 (b)),
and B[X] is locally Jaffard. It follows that Ry is a Jaffard domain.

(ii) = (). If R is locally Jaffard and § :={Xn| n 20}, then S IR = §-1(B[X]) =

| B[X, X-1] is the same. Lemma 2.9 allows to conclude that B[X] is a tocally Jaffard
domain. Since Ryp[x; is a Jaffard domain, then htp XB[X] = dim Ryp[x] =
dim, Rypry)- By replacing p with (0) in (i) = (ii) of Case 1, we obtain that

dim, Ryprx) = dim, qf(A) + tr.deg.4 B + 1 = tr.deg.4 B + 1 and the proof of the theorem

is complete. .

We notice that the hypothesis that A is a Jaffard domain (instead of a locally Jaffard
domain) in Theorem 2.8 is not sufficient for the conclusion. As a matter of fact, it is
sufficient to consider a Jaffard non locally Jaffard domain A [2, Example 3.2], and
B :=gf(A) . In this situation B[X] is locally Jaffard and htp XB[X] =1=1 + tr.dog.4 B
but R is not locally Jaffard {2, Corollary 2.12 (a)]. However, the hypothesis that A is
locally Jaffard is not necessary in order that R is also locally Jaffard (cf. Example 3.1

{d)).
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COROLLARY 2.10. Let D be a domain and K := gf(D). The following are

equivalent:

§)) D is locally Jaffard;
(i) D +XDg[X) is locally Jaffard, for each multiplicatively closed subset S of D ;
(i) D+ XK[X] is locally Jaffard.

PROOF. (i) = (ii) is a consequence of Theorem 2. 8, (i) = (ii) (cf. also [9, .

' Proposition 1 )] ; (ii) = (iii) holds trivialiy and (iii) = (i) is a particular case of [2,

Corallary 2.12 (a)]. N

Theorem 2.8 will give us the possibility to construct new examples of locally Jaffard

domains (cf. Examples 3.1 and 3.5),

We notice that, if X, .., X, are indeterminants over R =A + XB{X], then
R[Xy, ..., Xyl = A[X;, ..., Xy] + XBIX,, ..., Xp)[X] is a ring of the same type (i.e.
R[Xy, .., Xyl = A+ XB'[X] with A’ :=A[X,..,Xy] and B':=B[X,, .., Xyl ).
From the previous remark, we are led to studying the ring R[X, ..., X,;] by means of
the techniques introduced above.

As a consequence of Theorem 2.1 (a) and 2.3 (a), and of the fact that
dim R[Xy, ..., X} < dim, R[X, ..., X;] , we deduce :
™ Max{dim A[X,.., X,] + htgpy, | x,1XB[X,..., X,][X]; dim BLX,, ., X,)(X]} <.

< dim R[X,, ..., X,] <

< Min{dim, A[X,,.., X,] + tr.deg.s B+ 1 ; dim A[X,.., X,] + dim B[X,..., X,][X]}.

Therefore, for n big enough, it is possible to evaluate the dimension of R[X|, ..., X,] :

COROLLARY 2.11. Let A C B be an extension of integral domains, R :=A +
XB[X], n aninteger and let X, ..., X, be indeterminants over R .

{(a) If n 2z Max{tr.deg., B ; dim,A -1}, then dim R[X,, .., Xy
dim A[X,, ..., Xy] + trdeg.4 B+ 1 and R[Xy, .., X,] is a Jaffard domain.

(b) If n <trdegy B and if B is a field, then dim R[X,, ..., Xq]
dim A[X,, ..., X 1 +n+ 1 and R[Xy, ..., X;] is not a Jaffard domain.

It



dim A[X,, .., X1 + n+ 1 < dim,A[X,, .., X,] + trdeg.4 B + 1
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<PROOQF. : (a). By Theorem 1.2:(b}, we deduce that higry, x jXB[Xy, ...,
X,11X] < tr.deg.4 B + 1. The integral domains R and B[X] have in common the ideal

XB[X], then by [9,Lenhma 3] we obtain :
htR[Xl - Xﬁ] XB[X], vany Xn][X] 2 htB[Xl

..........

X, X1 XBIXy, ... X3][X] + Min{n, tr.deg.4 B}.
Therefore, higry, .. x,. 1 XBIX}, ..., XgllX] 2 trdeg.4 B + 1, thus we deduce the
equality. '

On the other hand, by (*) we get dim A[X,, .., X,] + trdegy4 B + 1%
< dim R{Xy, ... , X1 < dim, R[Xy, ..., X,] = dim, A[X}, ..., X,] + trdeg.4 B +1=
dim A[X;, ..., X3] + tr.deg.q B + 1, (where dim, A[X, ..., X,] = dim A[X|, ..., X}
since n2dim,A - 1, [2, Definition-Theorem 0.1]). and thus dim R[X 1 e Xpl =
dim, RIX}, ... , Xl .

(b) Let n < trdeg.4 B, by the same reason as in (a) we get
htgrx,, .., x,1 XBIXy, ., X,][X] 2 n+ 1. We deduce that 1 +n +dim A[X;, ..., X]
< dim R[Xy, ..., Xy] < dim A[X, ..., X,] + dim B[X,, ..., X3][X]. Therefore, if B
is a field, then dim B[X,, .., X ][X] =n+ 1 and dim R[X, .., X, ] =

dim, R[X;, ..., X;]. As a consequence, we obtain that R[X|, ..., X;;] is not a Jaffard

domain. 1

REMARK 2.12. It is known by [13, Theorem 3.5 (a)] that D is a Jaffard domain if
and only if D .+ XDg[X] is a Jaffard domain and dim{(D + XDg[XD) =1+ dim D . This
result can not be directely generalized to the general constructions A + XB[X] with

trdeg.4 B> 0 (cf. Examples 3.4 and 3.5).

3. EXAMPLES AND COUNTER-EXAMPLES

In this section we construct several examples showing the limits of the results proved in

Sections 1 and 2. We give also a few counter-examples showing that some results

i A Y
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concerning the domains of the type D + XD[X] can not be extended to the general

constructions A + XB[X] .

EXAMPLE 3.1. Let X be a field and let X, X, X,, X5, X; be indeterminants
over K. Set,
A = KX ]x)) + XaK(Xq, Xa, X)X x,y
B = K(X)[Xo](x,y+ X:K(X,, X)[X3](x,) + XaK(X1:Xo, X3)[Xal(x,),
R :=A + XB[X].
Then : w
(a) Max{dim A + htgz XB[X], dim B[X]} < dim R < dim A + dim B[X] .
p (b) dim A[X] < dim R, (notice that for the construction D + XDg[X] , it happens.that
dim D + XDg[X ] < dim D[X] , [13, Proposition 3.1]} .
(¢) R shows that [13, Theorem 3.5 (b) () = (ij)] , concerning the domains D+
XD([X], can not be extended to the constructions A + XB[X]. '
#(d) R is a locally Jaffard domain, even if A is not a locally Jaffard domain (cf.

Theorem 2.8 and [2, Proposition 2.16]).
As a matter of fact, set L = K(X,, Xq, X3), k:=K(X}, Xp), T = X4LIX4)(x,) »

N = Xak[X3)x,), Vi=L +M, Vo= k+ M, D =KX )Xk, + T,
B:=D+M and A :=K[X lx)+ I . By some well known result concerning the
D+ M domains, by [2, Corollary 2.8] and [12, Proposition 2.1 (5) and Theorem 2.4 (1)]
we obtain that V, V,, D and B are valuation domains of dimensions 1, 1, 2 and 3
respectively. I;’Ioreovcr: A

s  (JimB[X]=dimB+1=4,

+  dim A = dim K[X]¢x,) + dim V=2 [2, Corollary 2.8],

o dim,A = dim, K[X{](x,) + dim V + tr.deg. gix) L = 4 [2, Proposition 2.14 (a)],

¢ dim A[X] =dim V+dim K[X;](x,)[X] + Min{1, tr.deg.g(x,) L}=4
[2, Corollary 2.8],. _
o Spee(B)={@: M Byi=T M By = HXKKlo) + Bk

o Spec(d) ={(0); M ; D =X, KX lx)+ M},
o MNA=B;NA=B,NA =T [I2, Theorem 1.4] .
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(a) and (b). We notice that qf(4) = qf(B) = gf(V}, since they A, B and V have
the ideal M in common. Inside Spec(R) we have the following chain of prime ideals :
© (0) C MIX]N RC By[X]IN R € B,HIXIN R C M +XB[X] C . + XB[X] .
Therefore dim R 2 5. "By Theorem 2.3 (a), we deduce that dim, R = dim, A +
tr.deg.q B+1=35,thus dimR=5=dim,R. Asa consequence, we have :

(dim A[X] =4 ) < (dim R = 5) < (dim A + dim B[X] = 6) .
On the other hand (Theorem 1.2 (b)), we have
(dimA+htp XB[X]=2+1=3)<(dim B[X] =4) < (dimR=5).

(¢) Since dim R = dim, R =5, R is then a Jaffard domain. Furthermore,
dim A[X] =4 and dim,6A[X] = dim,A-+ 1 =35, then A[X] is not a Jaffard domain.
This example shows that [13, Theorem 3.5 (b) (j) = (jj)] can not be extended to the
constructions A + XB[X].

(d) The demain A is not a locally Jaffard domain [2, Proposition 1.5 (b)), since it is

not a Jaffard domain. In order to show that R is a locally Jaffard domain, it is sufficient

to see what happens for the prime ideals of the type p + XB[X] with D & Spec(4). As
a matter of fact, if B € Spec(R) andif X2 B, by setting §:={ X8 | n> 0}, weget

that Ry = (S-'R)g-13 = B[X, X-1]s-13 which is a Jaffard domain (because B isa

valuation domain). By the proof  of Theorem 2.8 (Casel), we deduce that
dim, Rep 4 xppxy = dim,Ap + trdeg.q B + 1. We claim that Rip+xpixy is a Jaffard
domain, for each P e Spec(A) .

* B =XB[X],ie. p=(0).Inthiscase, dim Ry =dim Ryp[y, =hip XB[X] =1
= dim,A(q) + tr.deg.4 B+ 1 = dim Ry .

e B =1 +XB[X]. In the present situation, the chain © shows that ht B =4
(since dim R=5), hence dimRg =4 =dim,K(X;) + dim V + trdeg.gx)yL +1=
dim, Agp + 1= dim, Rgg . ‘ '

e B =3 +XB(X]. In this case, dim Rg =htB =5 (see the chain © ) and
dim, Rp = dim,Ag, + 1 = dim, K[X,]x,) + dim V +trdeggx,) L +1=5, since
Ag, =A (cf. also [2, Theorem 2.6 (a)]) ' '

In all the cases, Ry is a Jaffard domain, M
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Theorem 2.3 shows the way to construct new classes of Jaffard domains.

EXAMPLE 3.2. Let,
e Ap=Z , B:=2ZV and Ry = Z +X2V[X],
where ZV is the integral closure of Z inside an algebraic extension of ) .

Since A, is a Jaffard domain, then by Theorem 2.3 (b) we deduce that Ry is a Jaffard

_domain and dim R, =1 +dim A; = 2 < dim A + dim By[X] =1+ 2=13 (cf. also’

Theorem 2.1 (a)). It is possible to show that R is a Noetherian domain if and only if
ZV is the integral closure of Z inside a finite extension of 0 .

We consider

e A,=R , By:=L[Y] and R,:=R+XC[Y][X],
Since qf(A;) € B, then, by Theorem 2.1 (b), we deduce that dim R, = dim A, +
dim B,[X] =2 and, by Theorem 2.3 (a), that dim, R, = dim, A, + tr.deg.4, By +1=2.
Therefore R, is a Jaffard domain. Moreover Ap[X] =R[X] is obviously a Jaffard

domain, but dim R, # dim A,[X]. (Notice that, for the domain R, , the inequalities of

Theorem 2.1 (a) are both equalities.) I

The following two examples show the limits of some of the results established in

Section 2.

EXAMPLE 3.3, Let: .

e Aw=Z , B:=0Q® and R:=Z +XOQM[X].
Then : _

(a) The bounds of the inequalities established in Theorem 2.1 (a) can be effectively
reached.

(b) R shows that [13, Theorem 3.5 (a), (1)) = (ii)] and [13, Theorem 3.5 (b},
(i) = (j)] can not be extended to the case A + B[X] .
As a matter of fact, let N=A\{0}:

(a) dim R = dim A + dim B[X] =2 (Theorem 2.1 (b)) and dim N-1B[X]+dimA =1
+1=2. ‘Therefore, dim N-1B[X]=1, since dim N-1B[X] + dim A < dim R .
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Henceforth, Max{dim N-1B[X] + dim 4 , dim BIX1} = dim N'IB[X] + dim A =
dim R =dim A + dim B[X] = 2, thus the bounds of the inequalities established in
Theorem 2.1 (a) can be effectively reached.

(b) By (a), dim R =2 and Theorem 2.3 (a) shows that dim, R = dim, Z +
tr.deg.q Q(Y)+ 1 =3, thus R is not a Jaffard domain. However, A is a Jaffard domain
[13, Theorem 3.5 (a), (i) = (ii)). Moreover, A[X] is a Jaffard domain and dim R = dim

A[X], in contrast with [13, Theorem 3.5 (b), (jj) => ()] for the domains of the type D +
XDg(x]. W

EXAMPLE 3.4. Let: :

» A:=2Z , B:=0Q[Y] and R:=Z +XO[YI[X].
Alors,

(a) R shows that [13, Theorem 3.5 (a), (i) = (ii)], (13, Theorem 3.5 (b), G = (Ml
and [2, Proposition 2.15 (a)] can not be exiended to the case A + B[X] .

(b) dim R > dim A[X] with trdeg.4 B>0.

As a matter of fact,

(a} qf(A) C B, then by Theorem 2.1 (b) we deduce that dim R = dim A + dim B[X]
=1+2=3, and hence Theorem 2.3 (a) shows that dim, R = dim, A + tr.deg.4 B+ 1=
3. We deduce that R is a Jaffard domain. Since A =2 isa Jaffard domain, but dim R
#dim A + 1, the domain R shows that [13, Theorem 3.5 (a), (i) = (ii)] can not be
extended from th_e case D+ XDy[X] 1o the general situation A + B[X] .

The rings R and A[X] are Jaffard domains, but dim R # dim A[X], hence [13,
Theorem 3.5 (b), () = (jj)] can not be extended to the general construction A + B[X] .

If A and R are the Yaffard domains introduced above, since trdeg.4 B#0, thenit
is clear that [2,Proposition 2.15] does not hold for the general construction A + B[X] .

(b) We know that 3 =dim R > dim A[X] =2, like in Example 3.1 (b), but in this
case tr.deg.a B#0. 1

EXAMPLE 3.5. Let X beafield and let X, ¥, Z,W be indeterminants over XK .
Set:

ot e
T R A N L
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A = K[Y)yy, B :=K[Y]yy + ZK(V)[Zl(z) + WK(Y, Z)[W](w) and R :=A + XB[X].
Then, '
(a) htg XB[X] =1 + trdeg.4 B> 1.
(b) dim R =dim A + htg XB[X] .
(¢) R isalocally Jaffard domain, different from all the examples already known.
As a matter of fact, set : | _
V=KX, NWlwy, M = WKX, D[W]ay), V' =Ky + ZKD)[Z]z) .
then,
(a) AC B=V'+ I are both valuation domains, with dimA =1 and dim B=3
(cf. [}12, Propasition 2.1 (5), Theorem 2.4 (1)]), and d :=trdeg.q B=2. Moreover :
Spec(B) = {(0); M ; B i=ZKW[Zlzy+ M ; D := YKV + B},
Spec(4) = {(0) ; YK[YI(r)} -
MNA=BnA=0), et L NA=YK[V]p,

thus hip XB[X] =3 =1 +tr.deg.4 B (Theorem 1.2 (b) and Lemma 1.3) .

(b) We notice that dim R > dim A + hig XB[X]=1+3 = 4 (Theorem 1.2 (a)),. and
that dim,R =dim,A + degtr.y B+ 1 =4 (Theorem 2.3 (a)). Therefore R is a Jaffard
domain wit.h KrﬁII'dimension 4=dimA + htg XB[X]_< dim A + dim B{X] = 5 (thus the
hypothesis qf(,;-i) C B in Corollary 1.4 {al) is essential).

{c) We notice that A and B are locallly Taffard domains, since they are both valuation
domains. Itis clear that B[X] is a locally Jaffard domain [9, Proposition 1 (i)] and by
Theorem 2.8 it t;‘ollows .that R isa locélly Jaffard domain, since htgy XB[X]=1+

trdeg.4 B (cf. (). N
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¢

The properties of divisorial ideals and class groups of noetherian integrally closed domiains,
more génerally of Krull domains, have been extensively studied in the past and are now well
known {F] . More recently; the notion of class group has been introduced for any domain in
[Bv] dnd [BvZ] and its general properties have been studied by several authors (seé for example
[A], [AA], [AAZ], [ARy], [G], [GR], [NAL, [Ry]). However the structure of the class group
is known for only a few special families of domains. :

A first class of domains for which this invéstigation has been carried out is that of Mori
domains, namely those domains with the ascending chain condition on divisorial ideals [Ri],
[BG1], [BG2], [BGR2]. A motivation 10 consider this kind of domain is that noetherian and
Krull domains are Mori. Thus, the results obtained hold in particular for noetherian domains
and moreover, since a Krull domain is 2 Mori completely integrally closed domaih, this study
puts in evidence which properties of Krull domains depend uniquely on the ascending chain
condition on divisorial ideals and: which ones depend also on the condition of being completely
integrally closed. o

In this paper we w1ll survey recent and older resu]ts on th1s subject.

Let R be an integral domain and K its quotient field.
Anideal I of R is diviserial if 1=1, = R:(R: I) =nf{xR:xe K, xR O I} and a

divisorial ideal I is v-finite if there is a finitely generated ideal J such that I=J,. We denote
by D(R) the set of all divisorial ideals of R and by DiR) the set of all v-finite id(_:als of R.
The sets D(R) and Dg(R) are semigroups, with unit R, with rcsbect to the operation
1*J] = (1), . The group P(R) of principal ideals of R is a subgroup of Df(R) and
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