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POWERS AND ROOTS OF TOEPLITZ OPERATORS

ISSAM LOUHICHI

Abstract. We study the commutativity of two Toeplitz operators whose sym-
bols are quasihomogeneous functions. We give a relationship between this
commutativity and the roots (or powers) of the Toeplitz operators (Proposi-
tion 7). We use this to characterize Toeplitz operators with symbols in L∞(D)
which commute with Toeplitz operators whose symbols are of the form eipθrm

(Theorem 13).

1. Introduction

Let D denote the open unit disk in the complex plane C, and let dA denote
normalized Lebesgue area measure. The Bergman space, denoted by L2

a, is the
Hilbert space of analytic functions on D that are square integrable with respect to
dA. It is well known that L2

a is a closed subspace of the Hilbert space L2(D, dA) and
(
√

n + 1zn)n∈N is an orthonormal basis of L2
a. Let P be the orthogonal projection

of L2(D, dA) onto L2
a. For a function φ ∈ L∞(D, dA), the Toeplitz operator with

symbol φ is the operator Tφ from L2
a to L2

a defined by Tφ(f) = P (φf).
If kz(w) = 1

(1−z̄w)2 =
∑∞

j=0(1 + j)wj z̄j is the Bergman reproducing kernel, then

Tφ(f)(z) = P (φf)(z) =
∫

D
φ(w)f(w)kz(w) dA(w).

The question to be studied in this paper is : When do two Toeplitz operators Tφ

and Tψ commute? In 1964, Brown and Halmos [4] solved this problem for the
analogously defined Toeplitz operators on the Hardy space. They showed that
TφTψ = TψTφ for some φ and ψ ∈ L∞(T), where T is the unit circle of C, if and
only if either

(a) φ and ψ are both analytic,
or

(b) φ̄ and ψ̄ are both analytic,
or

(c) one of the two symbols is a linear function of the other.
We recall that a function in L∞(T) is said to be analytic if all of its Fourier coeffi-
cients with negative indices are equal to 0.

The same question concerning Toeplitz operators on the Bergman space has a
much more complicated answer. There are however some results which resemble
those of [4]. In fact, Axler and C̆uc̆ković proved in [2] that the condition that one
of (a), (b) or (c) be true is still necessary and sufficient when the two symbols φ
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and ψ are bounded harmonic functions on D. Moreover, with Rao [3], they proved
that if φ is a bounded analytic function and if ψ is a bounded symbol such that
Tφ and Tψ commute then ψ must be analytic too. When we consider arbitrary
symbols, things are different. In [5] C̆uc̆ković and Rao used the Mellin transform to
study the commutativity of multiplication of two Toeplitz operators Tφ and Tψ on
the Bergman space and describe those operators which commute with Teipθrm for
(m, p) ∈ N×N. In this paper we use our results from [7] to interpret and extend the
results of [5]. We give some solutions in the case where the Toeplitz operators have
symbols which are “quasihomogeneous” functions and show that these solutions are
related to “pth roots” and powers of the Toeplitz operators.
As in [7] we say that a bounded symbol f is quasihomogeneous of degree k if it is
of the form eikθφ where φ is a radial function. In this case we say that the Toeplitz
operator Tf is quasihomogeneous of degree k.

2. Preliminaries

The Mellin transform of a function ψ ∈ L1([0, 1], rdr) is defined by

ψ̂(z) =
∫ 1

0

ψ(r)rz−1 dr

It is easy to see that ψ̂ is a bounded holomorphic function on the half-plane Π =
{z : <z > 2}.
We denote the Mellin convolution of two functions φ and ψ by φ∗M ψ and we define
it by the equation :

(φ ∗M ψ)(r) =
∫ 1

r

φ(
r

t
)ψ(t)

dt

t
.

It is clear that the Mellin transform converts Mellin convolution into a pointwise
product, i.e that :

(1) ̂(φ ∗M ψ)(r) = φ̂(r)ψ̂(r)

We shall often use the following classical theorem (see [8, p. 102]).

Theorem 1. Suppose that f is a bounded, holomorphic function on {z : <z > 0}
which vanishes at the pairwise distinct points d1, d2 · · · , where

i) inf{|dn|} > 0
and

ii)
∑

n≥1 <( 1
dn

) = ∞.

Then f vanishes identically on {z : <z > 0}.
Remark 2. We shall often apply this theorem to show that :
if ψ ∈ L1([0, 1], rdr) and if there exist n0 ∈ Z+, p ∈ N such that

ψ̂(n0 + pk) = 0 for all k ∈ N,

then ψ̂(z) = 0 for all z ∈ {z : <z > 2} and so ψ = 0.
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3. Powers of Toeplitz operators

The following Lemma determines the values of powers of a bounded quasiho-
mogeneous Toeplitz operator evaluated at any element of the orthonormal basis of
L2

a.

Lemma 3. Let n ∈ N, s ∈ Z+ and let ψ be a bounded radial function on D. Then,
for all k ∈ N we have

(
Teisθψ

)n

(ξk)(z) =
[ n−1∏

j=0

2(k + js + s + 1)ψ̂
(
2k + 2js + s + 2

)]
zk+ns

=

∏n−1
j=0 ψ̂

(
2k + 2js + s + 2

)
∏n−1

j=0 1̂1(2k + 2js + 2s + 2)
zk+ns,

where 11 denotes the constant function with value one.

PROOF. The lemma is a consequence of the following direct calculation : we
write

Teisθψ(ξk)(z) =
∫ 1

0

∫ 2π

0

ψ(r)rk
∞∑

j=0

(j + 1)ei(k+s−j)θrjzj 1
π

rdrdθ

and interchange the integral over [0, 2π] and the sum to see that

Teisθψ(ξk)(z) = 2(k + s + 1)ψ̂(2k + s + 2)zk+s

=
ψ̂(2k + s + 2)
1̂1(2k + 2s + 2)

zk+s

The lemma is proved by applying Teisθψ to ξk n times. ¥
We have the following decomposition of L2(D, dA) as

L2(D, dA) =
⊕

k∈Z
eikθR

where R is the space of functions on [0, 1] that are square integrable with respect
to the measure rdr. Thus every function f ∈ L2(D, dA) has the decomposition

f(reikθ) =
+∞∑

k=−∞
eikθfk(r), fk ∈ R.

Moreover, if f ∈ L∞(D, dA) ⊂ L2(D, dA) then for each r ∈ [0, 1),

| fk(r) |= 1
2π

|
∫ 2π

0

f(reiθ)e−ikθ dθ |≤ sup
z∈D

| f(z) |, ∀k ∈ Z

and so the functions fk are bounded in the disk.
In [7] we proved the following results which we will use in the proof of our main

theorem.

Proposition 4. Let φ be a nonzero bounded radial function, p be a positive integer
and f(reikθ) =

∑+∞
k=−∞ eikθfk(r) ∈ L∞(D, dA). Then

a) Tf commutes with Teipθφ if and only if Teikθfk
commutes with Teipθφ for all

k ∈ Z.
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b) If there exists k ∈ Z− and a bounded radial function fk such that

TeipθφTeikθfk
= Teikθfk

Teipθφ

then fk must be equal to zero.
c) If there exists k ∈ Z+ and a bounded radial function fk such that

TeipθφTeikθfk
= Teikθfk

Teipθφ

then fk is unique up to a constant factor. In particular f0 is a constant.

Thus if p > 0, f(reikθ) =
∑+∞

k=−∞ eikθfk(r) and Tf commutes with Teipθφ then
each fk is uniquely determined up to multiplication by a constant and equal to 0
for k < 0.
Next we present two technical but easy results which permit us to prove Proposi-
tions 7 and 9 the principal results of this section.

Remark 5. Let (al)l∈N and (bl)l∈N be two nonvanishing sequences and p and s two
positive integers such that

(2) al+sbl = bl+pal for all l ∈ N.

Then if

Ak =
s−1∏

j=0

ak+jp and Bk =
p−1∏

j=0

bk+js

we have :
AkBk+p = Ak+pBk for all k ∈ N.

(Just multiply the p equations obtained by taking l = k, k + s, .., k + (p− 1)s in (2)
together to see that, if (2) is true, then

Bk+p

Bk
=

ak+ps

ak
=

Ak+p

Ak
for all k ∈ N.)

Notation: Let S and T be two functions (resp. two operators). We will say that
S ≡ T if there exists a constant c 6= 0 such that S = cT .

Lemma 6. Let F and G be two nonzero bounded holomorphic functions on the half
plane Π = {z : <z > 2}. If there exists p ∈ N such that

(3) F (z)G(z + p) = F (z + p)G(z) for all z ∈ Π

then F ≡ G.

PROOF. Suppose that (3) is true. Then, if (as above) we multiply the k equations
obtained by taking zn = z + np for n = 0, ..., k − 1, we have

(4) F (z)G(z + kp) = F (z + kp)G(z) for all k ∈ N.

Now, let z0 ∈ Π such that G(z0) 6= 0 and let E = {k ∈ N : G(z0 + kp) = 0}. If∑
k∈E <( 1

|z0+kp| ) = ∞, then Theorem 1 implies that G = 0. This contradicts the
hypothesis of the lemma. Thus

∑
k∈Ec <( 1

|z0+kp| ) = ∞ where Ec is the complement
in N of the set E.
Now, equation (4) implies that

F (z0 + kp)
G(z0 + kp)

=
F (z0)
G(z0)

for all k ∈ Ec.
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So, applying Theorem 1 to the function F − cG where c = F (z0)
G(z0)

, completes the
proof. ¥

Let p and s be two positive integers and ψ a bounded radial function.
If

(
Teisθψ

)p is a Toeplitz operator then it is the unique quasihomogeneous Toeplitz
operator of degree ps (see Proposition 3 and Proposition 4 of [7]) which commutes
with Teisθψ. It is natural to ask whether all nonzero Toeplitz operators which are
of quasihomogeneous degree a multiple of s and which commute with Teisθψ, are of
this form.

Proposition 7. Let p and s be two positive integers and φ and ψ be two nonzero
bounded radial functions such that

(5) TeipθφTeisθψ = TeisθψTeipθφ.

Then

(6)
(
Teipθφ

)s

≡
(
Teisθψ

)p

.

PROOF. For all k ∈ N, let

ak =
φ̂(2k + p + 2)
1̂1(2k + 2p + 2)

and bk =
ψ̂(2k + s + 2)
1̂1(2k + 2s + 2)

so that
Teipθφ(ξk)(z) = akzk+p and Teisθψ(ξk)(z) = bkzk+s.

Then equation (5) shows that ak+sbk = bk+pak for all k ∈ Z+ and so Remark 5
implies that

(7)
s−1∏

j=0

ak+jp

p−1∏

j=0

bk+p+js =
s−1∏

j=0

ak+p+jp

p−1∏

j=0

bk+js.

Let F and G be the two bounded holomorphic functions defined for all z ∈ Π by

F (z) =
p−1∏

j=0

1̂1(z + 2js + 2s)
s−1∏

j=0

φ̂(z + 2jp + p)

and

G(z) =
s−1∏

j=0

1̂1(z + 2jp + 2p)
p−1∏

j=0

ψ̂(z + 2js + s).

Then equation (7) is equivalent to

F (2k + 2)G(2k + 2p + 2) = F (2k + 2p + 2)G(2k + 2) for all k ∈ Z+.

Now, applying Theorem 1, in the form of Remark 2, implies that

F (z)G(z + 2p) = F (z + 2p)G(z) for all z ∈ Π.

Finally, using Lemma 6, we obtain that :

∏s−1
j=0 φ̂(z + 2jp + p)

∏s−1
j=0 1̂1(z + 2jp + 2p)

≡
∏p−1

j=0 ψ̂(z + 2js + s)
∏p−1

j=0 1̂1(z + 2js + 2s)
for all z ∈ Π,

and Lemma 3 completes the proof. ¥

Remark 8. i) We will assume that
(
Teipθφ

)0 = I where I is the identity
operator of L2

a onto L2
a.
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ii) If p and s are both negative integers and if TeipθφTeisθψ = TeisθψTeipθφ, then
by considering the adjoint operators we obtain

Te−isθψTe−ipθφ = Te−ipθφTe−isθψ

and so Proposition 7 implies that
(
Te−ipθφ

)−s ≡ (
Te−isθψ

)−p.
Now, by considering once again the adjoint operators we see that

(
Teipθφ

)−s ≡ (
Teisθψ

)−p
.

Proposition 9. Let φ and ψ be two nonzero bounded radial functions and n, p and
s be positive integers.Then

(
Teipsθφ

)n =
(
Teisθψ

)np =⇒ Teipsθφ ≡
(
Teisθψ

)p
.

PROOF. For all k ∈ Z+, let

ak = 2(k+ps+1)φ̂(2k+ps+2) and bk =
p−1∏

j=0

2(k+js+s+1)ψ̂(2k+2js+s+2)

so that

(
Teipsθφ

)n =
(
Teisθψ

)np ⇔
n−1∏

j=0

ak+jps =
n−1∏

j=0

bk+jps for all k ∈ Z+

and
Teipsθφ =

(
Teisθψ

)p ⇔ ak = bk for all k ∈ Z+.

Suppose that

(8)
n−1∏

j=0

ak+jps =
n−1∏

j=0

bk+jps for all k ∈ Z+.

If we multiply the equation (8) and the equation obtained by replacing k by k + ps
in the equation (8) together we obtain that

(9) akbk+nps = ak+npsbk for all k ∈ Z+.

Now consider two bounded holomorphic functions F and G defined in the right half
plane Π by

F (z) = φ̂(z + ps)
p−1∏

j=0

1̂1(z + 2js + 2s)

and

G(z) = 1̂1(z + 2ps)
p−1∏

j=0

ψ̂(z + 2js + s).

Then equation 9 is equivalent to

F (z)G(z + 2nps) = F (z + 2nps)G(z) for all z ∈ Π.

Hence, Lemma 6 implies that

F (z) ≡ G(z) for all z ∈ Π,

and Lemma 3 completes the proof. ¥
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Remark 10. In [7](Proposition 6) we prove that if p > 0 and φ is a nonzero
bounded radial function and if there exists a bounded radial function ψ such that
Tψ commutes with Teipθφ then ψ must be a constant. Here is another proof of this
proposition. In fact, using Proposition 7, we have

(
Tψ

)p ≡ I, so Proposition 9
implies that Tψ ≡ I, and so, that ψ ≡ 11 since I is the Toeplitz operator of symbol
11.

4. Main result

Let p be a positive integer. We start this section with the definition of the T-pth

root of quasihomogeneous Toeplitz operator of degree p or −p. This new notion
plays a important role in the remainder of the paper.

Definition 11. Let φ be a nonzero bounded radial function and p be a positive
integer. We say that the Toeplitz operator Teipθφ has a T-pth root Teiθψ if and only
if there exists a nonzero bounded radial function ψ such that

Teipθφ =
(
Teiθψ

)p
.

Remark 12. i) The T-pth root of a quasihomogeneous Toeplitz operator is
unique. In fact, suppose that Teipθφ has two T-pth roots Teiθψ and Teiθψ̃ then(
Teiθψ

)p =
(
Teiθψ̃

)p. Then, by Proposition 9, we have that Teiθψ = Teiθψ̃

which implies that ψ = ψ̃.
ii) If the quasihomogeneous degree is negative we have an analogous definition

of the T-pth root. Let p be a positive integer and φ be a bounded radial func-
tion. Then, we say that Te−ipθφ has a T-pth root if there exists a bounded
radial function ψ such that Te−ipθφ =

(
Te−iθψ

)p. It is easy to see, by taking
adjoints, that Te−ipθφ has a T-pth root Te−iθψ if and only if Teipθφ has a
T-pth root Teiθψ.

Examples :
i) T

eiθ( r+r5
2 )

is the T-2th root of Te2iθr6 .

ii) T
eiθ( 3r+2r5+3r9

8 )
is the T-2th root of Te2iθr10 .

Now, if Teiθψ is the T-pth root of Tipθφ and if
(
Teiθψ

)k (for k in N) is a Toeplitz

operator, then
(
Teiθψ

)k is the unique nonzero quasihomogeneous Toeplitz operator
of degree k which can commute with Teipθφ. What we prove below is that if Teipθφ

has a T-pth root Teiθψ, then the only nonzero quasihomogeneous Toeplitz operator
of degree s which commutes with Teipθφ is a sth power of Teiθψ, extending the result
(Propositions 7 and 9) of section 3 in this case.

Theorem 13. Let φ be a nonzero bounded radial function and p be a positive
integer. Assume that Teipθφ has a T-pth root Teiθψ. Suppose that

f(reiθ) =
+∞∑

k=−∞
eikθfk(r) ∈ L∞(D, dA)

is such that

(10) TfTeipθφ = TeipθφTf .

Then
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i) fk = 0 for k < 0.

ii) If k ≥ 0 and
(
Teiθψ

)k is a Toeplitz operator, then either Teikθfk
≡ (

Teiθψ

)k

or fk = 0.

iii) If k ≥ 0 and
(
Teiθψ

)k is not a Toeplitz operator, then fk = 0.

PROOF. Assertion a) of Proposition 4 implies that if equation (10) is true, then

Teikθfk
Teipθφ = TeipθφTeikθfk

, for all k ∈ Z.

Thus i) is a direct consequence of assertion b) of Proposition 4.
Now, to prove ii), let k be a positive integer such that

(
Teiθψ

)k is a Toeplitz op-

erator. Then
(
Teiθψ

)k is a quasihomogeneous Toeplitz operator of degree k which
commutes with Teipθφ. So, if fk is not identically equal to zero, then fk is a bounded
nonzero radial function such that Teikθfk

commutes with Teipθφ. Thus, assertion c)

of Proposition 4 implies that Teikθfk
≡ (

Teiθψ

)k.

Finally, let k be a positive integer such that
(
Teiθψ

)k is not a Toeplitz operator and
suppose that there exists a nonzero bounded radial function fk such that Teikθfk

commutes with Teipθφ. Then Proposition 7 implies that

(
Teikθfk

)p ≡ (
Teipθφ

)k
.

Thus
(
Teikθfk

)p ≡ (
Teiθψ

)kp and Proposition 9 implies that Teikθfk
≡ (

Teiθψ

)k

which contradicts our hypothesis. This proves iii). ¥
Before starting with corollaries, we state an interesting theorem which follows

from [5] and give an idea of its proof. In fact we will apply this theorem to see
that if p is any positive integer and m is any nonnegative integer then the Toeplitz
operator Teipθrm always has a T-pth root.

Theorem 14. Let p ≥ 1 and m ≥ 0 be two integers. For all integers s, such that
1 ≤ s < p, there exists a unique bounded radial function ψ such that

(11) TeisθψTeipθrm = TeipθrmTeisθψ.

PROOF. (This is a slight variation of the proof found in [5])
If m ≥ 0, p ≥ 1 and 1 ≤ s < p, we define the radial functions f and g by

f(r) = 2pr2s(1− r2p)−
s
p and g(r) = 2prm+p(1− r2p)

s
p−1.

Let ψ be the radial function defined by

rsψ = f ∗M g.

C̆uc̆ković and Rao prove, using a long rather technical calculation, that ψ is bounded.
Here, we will show that ψ satisfies (11). To do this, we need only verify that for
k ∈ Z+ :

2k + 2p + 2
2k + m + p + 2

r̂sψ(2k + 2p + 2) =
2k + 2s + 2

2k + m + p + 2s + 2
r̂sψ(2k + 2).

By (1), we have r̂sψ(2k + 2) = f̂(2k + 2)ĝ(2k + 2). A simple substitution t = r2p

shows that

f̂(2k + 2) = B
(2k + 2s + 2

2p
, 1− s

p

)
and ĝ(2k + 2) = B

(2k + m + p + 2
2p

,
s

p

)
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where B denotes the beta function. Using the well-known identities B(z1, z2) =
Γ(z1)Γ(z2)
Γ(z1+z2)

and Γ(1 + z) = zΓ(z), where Γ is the gamma function, it is easy to see
that

(12) r̂sψ(2k + 2p + 2) =
(2k + 2s + 2)(2k + m + p + 2)

(2k + 2p + 2)(2k + m + p + 2s + 2)
r̂sψ(2k + 2)

which finishes the proof. ¥
Remark 15. i) It is trivial that Teipθrm commutes with itself. So, if p = s,

assertion c) of Proposition 4 implies that ψ ≡ rm.
ii) We wish to highlight the following case. If m = (2n + 1)p for n ∈ N then

the function ψ exists for all s ∈ N. In fact, if we substitute m = (2n + 1)p
in (12) and use Theorem 1, we obtain for all z ∈ Π

r̂sψ(z + 2p)

r̂sψ(z)
=

F (z + 2p)
F (z)

, where F (z) =
Γ( z+2s

2p )Γ( z
2p + n + 1)

Γ( z
2p + 1)Γ( z+2s

2p + n + 1)
.

Now, using the identity Γ(1 + z) = zΓ(z) repeatedly, we have

F (z) = 2p

∏n−1
j=0 (z + 2jp + 2p)∏n
j=0(z + 2jp + 2s)

which is a proper fraction in z and can be written as

(13) F (z) =
n∑

j=0

aj

z + 2jp + 2s
.

Since 1
z+2jp+2s = ̂r2jp+2s(z), it follows by Lemma 6 that

r̂sψ(z) ≡
n∑

j=0

aj
̂r2jp+2s(z)

where the aj are defined by (13), and so Theorem 1 implies that

ψ(r) ≡
n∑

j=0

ajr
2jp+s.

Next, we give some easy but interesting consequences of Theorem 14.

Corollary 16. For all integers m ≥ 0, p ≥ 1, and s ≥ 1 there exists a bounded
radial function ψ such that

(
Teisθψ

)p ≡ Teipsθrm .

PROOF. Let m ≥ 0, p ≥ 1, and s ≥ 1 be integers. Theorem 14 implies that there
exists a bounded radial function ψ such that

TeisθψTeipsθrm = TeipsθrmTeisθψ.

Using Proposition 7 we have
(
Teisθψ

)ps ≡ (
Teipsθrm

)s and so, an application of
Proposition 9 finishes the proof. ¥

In [4], Brown and Halmos studied multiplicativity of Toeplitz operators on the
Hardy space and showed that the product of two Toeplitz operators Tf and Tg is
equal to a third Toeplitz operator Th for some f, g and h in L∞(T) if and only if
f is conjugate analytic or g is analytic -that is, hardly ever. The question of when
the product of two Toeplitz operators on the Bergman space is equal to a third is
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much more complicated and still open. Most work on this question shows that it
is not often true that the product of two Toeplitz operators is a Toeplitz operator
(see [1] and [6]). But, below, we show that, for certain nontrivial Toeplitz operators
Teiθψ, not only is

(
Teiθψ

)2 equal to a Toeplitz operator, but there exists a positive
integer k such that

(
Teiθψ

)i is a Toeplitz operator for all positive integers i ≤ k.

Corollary 17. Let m ≥ 0 and p ≥ 1 be two integers. If Teipθrm has a T-pth root
Teiθψ then, for all integers k with 1 ≤ k ≤ p, the product

(
Teiθψ

)k is a Toeplitz
operator.

PROOF. Let k be an integer such that 1 ≤ k ≤ p. By Theorem 14 we know that
there exists a bounded radial function φ such that Teikθφ commutes with Teipθrm .
So, Proposition 7 implies that

(
Teikθφ

)p ≡ (
Teipθrm

)k
.

Thus
(
Teikθφ

)p =
(
Teiθψ

)kp since Teiθψ is the T-pth root of Teipθrm . And so Propo-
sition 9 finishes the proof. ¥

It is easily seen that if f is a bounded analytic function on D, then Tf is just
a multiplication operator. Thus for any integer k ≥ 1, it is clear that

(
Tf

)k is a
Toeplitz operator of symbol fk. By taking adjoints, we can see that the powers
of a Toeplitz operator with conjugate analytic symbol is also a Toeplitz operator.
These are the trivial cases. The next corollary says there are nontrivial symbols f

such that
(
Tf

)k is always a Toeplitz operator for all integers k ≥ 1.

Corollary 18. There exist bounded radial functions ψ such that for all integers
k ≥ 1 the product

(
Teiθψ

)k is still a Toeplitz operator.

PROOF. Let n ≥ 0, and p ≥ 1 be two integers. By Theorem 14 we know that
the Toeplitz operator Teipθr(2n+1)p has a T-pth root Teiθψ where ψ is a bounded
radial function. Moreover the assertion ii) of Remark 15 tells us that, for all inte-
gers k ≥ 1, there exists a bounded radial function ψk such that Teikθψk

commutes

with Teipθr(2n+1)p . Thus Proposition 7 implies that
(
Teikθψk

)p ≡ (
Teiθψ

)kp since
Teipθr(2n+1)p =

(
Teiθψ

)p and, again, Proposition 9 finishes the proof. ¥
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