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On Toeplitz operators with quasihomogeneous symbols

By

Issam Louhichi and Lova Zakariasy

Abstract. In this paper, we give some basic results concerning Toeplitz operators whose symbol
is of the form eipθ φ, where φ is a radial function, then use these results to characterize all Toeplitz
operators which commute with them.

1. Introduction. Let D denote the open unit disc in the complex plane and let dA(z) =
1
π
rdrdθ be normalized Lebesgue area measure on D. The Bergman space L2

a is the subset
of L2(D, dA), consisting of analytic functions on D. Let P be the operator of orthogonal
projection from L2(D, dA) onto L2

a . For a function ϕ ∈ L∞(D, dA), we define the Toeplitz
operator Tϕ : L2

a �→ L2
a with symbol ϕ by

Tϕ(f ) = P(ϕf ).

It is well known that, if Kz(w) = (1 − z̄w)−2 is the Bergman reproducing kernel, then

Tϕ(f )(z) =
∫
D

ϕ(w)f (w)Kz(w)dA(w), z ∈ D.

In 1964, Brown and Halmos [3] showed that on the Hardy space, two bounded Toeplitz
operators Tϕ and Tψ commute if and only if: (i) both ϕ and ψ are analytic, or (ii) both ϕ̄
and ψ̄ are analytic, or (iii) one is a linear function of the other. In [1] Axler and Čučković
proved that if the two symbols are bounded harmonic functions, then the same result is also
true for Toeplitz operators on the Bergman space. Recently, with Rao [2], they proved that
if ϕ is a bounded analytic function and if there exists a bounded function ψ such that Tϕ
and Tψ commute on L2

a , then ψ must be analytic too. In [8] and [9] Vasilevski gave the
description of many (geometrically defined) classes of commuting Toeplitz operators.

The situation with a general symbol is rather more complicated. Let ϕ,ψ ∈ L1(D, dA)
be radial functions, i.e. ϕ(z) = ϕ(|z|), z ∈ D. It is well known and easy to see that two
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Toeplitz operators with radial symbols commute. We show here that if p and s are integers
such that ps � 0, then the Toeplitz operators with symbols eipθϕ and eisθψ commute only
in certain trivial cases. The case ps � 0 is treated for ϕ = rm in [4]. We note that the part
(b) of Theorem 3 in [4] is not correct as stated.

2. Some basic results about quasihomogeneous symbols. An operator that will arise
in our study of Toeplitz operators is the Mellin transform, defined for any function ϕ ∈
L1([0, 1]; rdr), by the formula

ϕ̂(z) =
1∫

0

ϕ(r)rz−1dr,

which is a bounded holomorphic function in the half plane {z : Re z > 2}. It is known that
if there exists a sequence (nk)k�0 ⊂ N, such that

ϕ̂(nk) = 0 and
∑
k�0

1

nk
= ∞

then by the Muntz-Szasz theorem (see [7]), ϕ = 0.
A function f is said to be quasihomogeneous of degree k if and only if

f (reiθ ) = eikθϕ(r),

where ϕ is a radial function (see [6]). A direct calculation gives the following lemma which
we shall use often.

Lemma 1. Let p � 0 an integer and ϕ a bounded radial function. Then, for all
n = 0, 1, 2, . . . :

Teipθ ϕ(z
n) = 2(n+ p + 1)ϕ̂(2n+ p + 2) zn+p;

Te−ipθ ϕ(z
n) =

{
0 if 0 � n � p − 1
2(n− p + 1)ϕ̂(2n− p + 2) zn−p if n � p.

Next, we introduce the notion of radialization (see [10]). If f ∈ L1(D, dA), we define
the “radialization” of f by

rad(f )(z) = 1

2π

2π∫
0

f (eit z)dt.

It is easy to see that a function f is radial if and only if rad(f ) = f .
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Lemma 2. For a bounded function f and for all integers m, n � 0:

〈Trad(f )z
n, zm〉 =

{〈Tf zm, zm〉 if n = m

0 if n �= m.

P r o o f. Writing out the integrals, changing the order of integration and making a change
of variable, we have for all integers m, n � 0,

〈Trad(f )z
n, zm〉 = 1

2π

2π∫
0

∫
D

f (eit z)znz̄mdA(z) dt

= 1

2π


 2π∫

0

ei(m−n)t dt


 ∫

D

f (w)wnw̄mdA(w)

= 1

2π


 2π∫

0

ei(m−n)t dt


 〈Tf zn, zm〉

=
{〈Tf zm, zm〉 if n = m

0 if n �= m. �

Proposition 3. A bounded function f is quasihomogeneous of degree p ∈ Z if and only
if, for all integers n � 0, there exists λn ∈ C such that

Tf (z
n) =

{
0 if n < max(−p, 0)
λnz

n+p if n � max(−p, 0).
(1)

P r o o f. Let f be a quasihomogeneous function of degree p, i.e., f = eipθϕ, where
ϕ is a radial function. The necessity of condition (1) is a direct consequence of Lemma 1.

Conversely, suppose that equation (1) is true for any p ∈ Z. Then, for any positive
integers n and m:
if p � 0

〈Tz̄pf zn, zm〉 = 〈f zn, zm+p〉 =



0 if n �= m
λm

m+ p + 1
if n = m;

and if p < 0

〈Tz−pf zn, zm〉 = 〈f zn−p, zm〉 =



0 if n �= m
λm−p
m+ 1

if n = m.
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Thus, if we note

ϕ =
{
z̄pf if p � 0
z−pf if p < 0

,

then by Lemma 2, we have for all integers m, n � 0,

〈Trad(ϕ)z
n, zm〉 = 〈Tϕzn, zm〉

hence, Trad(ϕ) = Tϕ . Thus rad(ϕ) = ϕ and ϕ is a radial function. But this easily implies
that f is a quasihomogeneous function of degree p. �

Proposition 4. Let f1 and f2 be two quasihomogeneous bounded functions of degrees
p and s respectively. If there exists a function h such that Tf1Tf2 = Th, then h is a
quasihomogeneous function of degree p + s.

P r o o f. Let ϕ1 and ϕ2 be the two radial functions, such that

f1 = eipθϕ1 and f2 = eisθϕ2.

By Lemma 1, ifp and s are greater than or equal to 0, then for all n � 0, there exists λn ∈ C

such that

Teipθ ϕ1
Teisθ ϕ2

(zn) = λnz
n+p+s .

When p � 0 and s < 0, we have

Teipθ ϕ1
Teisθ ϕ2

(zn) =
{

0 if n < −s
λn z

n+p+s if n � − s.

So, if Tf1Tf2 = Th then by Proposition 3, h is a quasihomogeneous function of degree
p + s.

If p and s are both negative, or if p < 0 and s � 0, then by considering the adjoint
operator we obtain the same result. �

Proposition 4 helps us to identify the Toeplitz operators which are idempotents. The
following corollary is an immediate consequence.

Corollary 5. If f is a quasihomogeneous function of degree different from 0 and
if T 2

f = Tf , then f = 0.

3. Commuting Toeplitz operators. In this section, we will see that two Toeplitz opera-
tors with quasihomogeneous symbols such that the signs of their quasihomogeneous degrees
are opposite commute only in the trivial case, i.e., if one of them is the constant operator.
Then Remark 12 shows that a function in L2(D, dA) whose polar decomposition has only
negative components cannot commute with a non trivial Toeplitz operator whose symbol is
of positive quasihomogeneous degree.
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Proposition 6. Let ψ be a bounded radial function and eipθφ a quasihomogeneous
bounded function of degree p > 0. If

TψTeipθφ = TeipθφTψ

then, φ = 0 or ψ is a constant.

P r o o f. If Teipθφ and Tψ commute, then for all n � 0,

(2n+ 2p + 2)φ̂(2n+ p + 2)ψ̂(2n+ 2p + 2)

= (2n+ 2)φ̂(2n+ p + 2)ψ̂(2n+ 2).

Let E = {n : φ̂(2n+ p + 2) = 0}. If
∑
n∈E

1
n

= ∞, then φ = 0, as discussed in Section 2.

Otherwise,
∑
n∈Ec

1
n

= ∞, where Ec is the complement of E in N, and so we have

(2n+ 2p + 2)ψ̂(2n+ 2p + 2) = (2n+ 2)ψ̂(2n+ 2), ∀n ∈ Ec.
This implies that

(z+ 2p)ψ̂(z+ 2p) = zψ̂(z),∀z ∈ {Re z > 0}.
For any integer n0 greater than 0, the last equation gives us

(n0 + 2kp)ψ̂(n0 + 2kp) = n0ψ̂(n0), ∀k ∈ N.

If we denote by C the constant n0ψ̂(n0), we obtain

ψ̂(n0 + 2kp) = C

n0 + 2kp
= C1̂1(n0 + 2kp), ∀k ∈ N

and so, ψ is equal to C11. �

R e m a r k 7. If p < 0 the same result is true by considering the adjoint of the operator.

Proposition 8. Let p � s be two integers greater than 0 and φ and ψ two bounded
radial functions. If

TeipθφTe−isθψ = Te−isθψTeipθφ

then, φ = 0 or ψ = 0.

P r o o f. If Teipθφ and Te−isθψ commute, then, for each n � 0,

(a) φ̂(2n+ p + 2)ψ̂(2n+ 2p − s + 2) = 0, if n � s − 1;
(b) φ̂(2n+ p + 2)ψ̂(2n+ 2p − s + 2) = Cnφ̂(2n+ p − 2s + 2)ψ̂(2n− s + 2)

if n � s.

where Cn = n−s+1
n+p+1 .
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Now, equation (a) implies that for all n0 � s− 1, there exists a sequence (nk)k∈N, which
is defined by nk+1 = nk + s or nk + p, such that

φ̂(2nk + p + 2)ψ̂(2nk + 2p − s + 2) = 0.(2)

It is clear that∑
k∈N

1

2nk + 1
= ∞.

Let E1 = {k : φ̂(2nk + p + 2) = 0} and E2 = {k : ψ̂(2nk + 2p − s + 2) = 0}. Since

∑
k∈N

1

2nk + 1
�

∑
k∈E1

1

2nk + 1
+

∑
k∈E2

1

2nk + 1
,

we see that at least one of the series
∑
k∈E1

1
2nk+1 and

∑
k∈E2

1
2nk+1 diverges, and so φ = 0

or ψ = 0. �

This result is not true if both of the integersp and s are positive. There are lots of examples
of functions of positive quasihomogeneous degree which are the symbols of commuting
Toeplitz operators (see [4]). In the general case we have the following proposition.

Proposition 9. Let p, s be two integers greater than 0 and φ �= 0 a bounded radial
function. If there exists a bounded radial function ψ not identically zero, such that

TeipθφTeisθψ = TeisθψTeipθφ

then, ψ is unique up to a constant factor.

P r o o f. Suppose there exist two functions ψ1 �= 0 and ψ2 �= 0, such that

TeipθφTeisθψ1
= Teisθψ1

Teipθφ,

TeipθφTeisθψ2
= Teisθψ2

Teipθφ.

This is equivalent to:

φ̂(2n+ p + 2s + 2)ψ̂1(2n+ s + 2)

= Cnφ̂(2n+ p + 2)ψ̂1(2n+ 2p + s + 2)

φ̂(2n+ p + 2s + 2)ψ̂2(2n+ s + 2)

= Cnφ̂(2n+ p + 2)ψ̂2(2n+ 2p + s + 2)

with Cn = n+p+1
n+s+1 . From these equalities, one obtains:

r̂ sψ1(2n+ 2) r̂sψ2(2n+ 2p + 2) = r̂ sψ1(2n+ 2p + 2) r̂sψ2(2n+ 2)(3)

for all n in the set E = {n ∈ N : φ̂(2n+ 2s + p + 2)φ̂(2n+ p + 2) �= 0}.
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Clearly, we have
∑
n∈E

1
n

= ∞ because we supposed that φ �= 0.

From this and equation (3), we have

r̂ sψ1(z) r̂
sψ2(z+ 2p) = r̂ sψ1(z+ 2p) r̂sψ2(z), ∀z ∈ {Re z > −s}.(4)

Now, since ψ1 is not identically zero, there exists an integer n0 such that

r̂ sψ1(n0) �= 0.

Let F = {k ∈ N : r̂ sψ1(n0 + 2kp) = 0}. If
∑
k∈F

1
n0+2kp = ∞, then equation (4) implies

that r̂ sψ2(n0 + 2kp) = 0 for all k ∈ F . Thus, rsψ2 = 0 and so ψ2 = 0. Otherwise, we
have

∑
k∈Fc

1
n0+2kp = ∞ and so by equation (4) we obtain that

( r̂sψ2 − λ r̂sψ1)(n0 + 2kp) = 0, where λ = r̂ sψ2(n0)

r̂sψ1(n0)
.

Thus, in this case, ψ2 = λψ1. �

Now, let R be the space of functions which are square integrable in [0, 1] with respect
to the measure rdr . By using the fact that the trigonometric polynomials are dense in
L2(D, dA) and that for k1 �= k2, eik1θR is orthogonal to eik2θR, one see that:

L2(D, dA) =
⊕
k∈Z

eikθR.

Thus, each function ψ ∈ L2(D, dA) can be written as (see [4]):

ψ(reiθ ) =
∑
k∈Z

eikθψk(r), where ψk ∈ R.(5)

Moreover, if ψ ∈ L∞(D, dA) ⊂ L2(D, dA) then for each r ∈ [0, 1),

|ψk(r)| =
∣∣∣∣∣∣

2π∫
0

ψ(reiθ )e−ikθ dθ
2π

∣∣∣∣∣∣ � sup
z∈D

|ψ(z)|, ∀k ∈ Z

hence, the functions ψk are bounded in the disk.

Lemma 10. Let eipθφ be a bounded function of quasihomogeneous degree p � 0
and let

ψ(reiθ ) =
∑
k∈Z

eikθψk(r) ∈ L∞(D, dA).

Then,

TψTeipθφ = TeipθφTψ ⇐⇒ TeikθψkTeipθφ = TeipθφTeikθψk , ∀k ∈ Z.
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P r o o f. Since

TψTeipθφ(z
n) =

∑
k+p+n�0

TeikθψkTeipθφz
n

and

TeipθφTψ(z
n) =

∑
k+n�0

TeipθφTeikθψk z
n

then, for each couple (m, n) ∈ N2 :

〈TψTeipθφzn, zm〉 = 〈Tei(m−n−p)θψm−n−pTeipθφz
n, zm〉(6)

and

〈TeipθφTψzn, zm〉 = 〈TeipθφTei(m−n−p)θψm−n−pz
n, zm〉.(7)

On the other hand,

〈TeipθφTeikθψk zn, zm〉

=
{

0 if k �= m− n− p

〈TeipθφTei(m−n−p)θψm−n−pz
n, zm〉 if k = m− n− p

=
{

0 if k �= m− n− p

〈TeipθφTψzn, zm〉 if k = m− n− p

and

〈TeikθψkTeipθφzn, zm〉

=
{

0 if k �= m− n− p

〈Tei(m−n−p)θψm−n−pTeipθφz
n, zm〉 if k = m− n− p

=
{

0 if k �= m− n− p

〈TψTeipθφzn, zm〉 if k = m− n− p
.

This shows that, if TeipθφTψ = TψTeipθφ , then for each (m, n) ∈ N2 and for all k ∈ Z,

〈TeipθφTeikθψk zn, zm〉 = 〈TeikθψkTeipθφzn, zm〉,

and so TeipθφTeikθψk = TeikθψkTeipθφ, ∀k ∈ Z.
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Conversely, if for all k ∈ Z, TeipθφTeikθψk = TeikθψkTeipθφ , then in particular, for any
pair m, n ∈ N, if k = m− n− p, we have:

〈TeipθφTei(m−n−p)θψm−n−pz
n, zm〉 = 〈Tei(m−n−p)θψm−n−pTeipθφz

n, zm〉.
Thus, by formulas (6) and (7),

〈TeipθφTψzn, zm〉 = 〈TψTeipθφzn, zm〉
for all m and n in N. Finally, TeipθφTψ = TψTeipθφ . �

Theorem 11. Let eipθφ be a non-zero bounded function of quasihomogeneous degree
p > 0. If

ψ(reiθ ) =
∑
k∈Z

eikθψk(r) ∈ L∞(D, dA)

is such that TψTeipθφ = TeipθφTψ , then ψk = 0 for all k < 0.

P r o o f. By Lemma 10, TψTeipθφ = TeipθφTψ implies that Teikθψk commutes with Teipθφ
for each k ∈ Z. Thus, if k < 0 then the Proposition 8 gives ψk = 0 for all k < 0. �

R e m a r k 12. Let ψ be as in Theorem 11 and φ a non constant bounded radial function
such that TψTφ = TφTψ . Then, Lemma 10 gives us TφTeikθψk = TeikθψkTφ for all k ∈ Z.

Now, Proposition 6 implies that ψk = 0 for all k > 0, while Remark 7 shows that ψk = 0
for all k < 0. So ψ = ψ0.

This remark gives another proof of Theorem 6 in [4].

A c k n o w l e d g e m e n t. The authors would like to thank Elizabeth Strouse for the
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