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Abstract. In this paper we study the product of Toeplitz operators on
the harmonic Bergman space of the unit disk of the complex plane C.
Mainly, we discuss when the product of two quasihomogeneous Toeplitz
operators is also a Toeplitz operator, and when such operators commute.
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1. Introduction. Let L2(D, dA) be the space of all square integrable func-
tions on the unit disk D with respect to the normalized Lebesgue measure

dA = rdr
dθ

π
. The harmonic Bergman space, denoted by L2

h, is the closed sub-

space of L2(D, dA) consisting of all harmonic functions on D. It is well known
that L2

h is a Hilbert space with the set {√n+ 1 zn}∞
n=0 ∪ {√n+ 1 zn}∞

n=1 as
an orthonormal basis. Let Q be the orthogonal projection of L2(D, dA) onto
L2
h. For a bounded function f on D, the Toeplitz operator Tf with symbol f

is defined by

Tf (u) = Q(fu), for u ∈ L2
h.

The function f defined on D is said to be quasihomogeneous of degree p if
it can be written as f(reiθ) = eipθφ(r), where p is an integer and φ is a radial
function on D. In this case, the associated Toeplitz operator Tf is also called
quasihomogeneous Toeplitz of degree p. Quasihomogeneous Toeplitz operators
were first introduced by the authors while generalizing the results of [3].

The second author was partially supported by Agence Universitaire de la Francophonie.
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A major goal in the theory of Toeplitz operators on the Bergman space
over D is to completely describe the commutant of a given Toeplitz opera-
tor, that is, the set of all Toeplitz operators that commute with it. Choe and
Lee first in [1] and [2], then recently Ding in [4], studied the commutants
of Toeplitz operators with harmonic symbol, defined on L2

h. In this paper,
we present new results about the commutant of a given quasihomogeneous
Toeplitz operator. We shall start by studying the product of such an opera-
tor with a radial Toeplitz operator. Then, we shall highlight the relationship
between the symbols of two commuting quasihomogeneous Toeplitz operators
of positive degrees.

Before we state our results, we need to introduce the Mellin transform which
is going to be our main tool. The Mellin transform ̂f of a radial function f in
L1([0, 1], rdr) is defined by

̂f(z) =

1
∫

0

f(r)rz−1 dr.

It is well known that, for these functions, the Mellin transform is well defined
on the right half-plane {z : �z ≥ 2} and it is analytic on {z : �z > 2}. It is
important and helpful to know that the Mellin transform ̂f is uniquely deter-
mined by its values on any arithmetic sequence of integers. In fact we have the
following classical theorem [9, p. 102].

Theorem 1. Suppose that f is a bounded analytic function on {z : �z > 0}
which vanishes at the pairwise distinct points z1, z2 . . ., where

(i) inf{|zn|} > 0
and

(ii)
∑

n≥1 �( 1
zn

) = ∞.

Then f vanishes identically on {z : �z > 0}.
Remark 1. Now one can apply this theorem to prove that if f ∈ L1([0, 1], rdr)
and if there exist n0, p ∈ N such that

̂f(pk + n0) = 0 for all k ∈ N,

then ̂f(z) = 0 for all z ∈ {z : �z > 2} and so f = 0.

We shall often use the Lemma 2.1 in [5, p. 1767] which can be stated as
follows.

Lemma 1. Let p ∈ Z and φ be a bounded radial function. For each k ∈ N,

Teipθφ(z
k) =

{

(2k + 2p+ 2)̂φ(2k + p+ 2)zk+p if k ≥ −p
(−2k − 2p+ 2)̂φ(−p+ 2)z−k−p if k < −p,

Teipθφ(z
k) =

{

(2k − 2p+ 2)̂φ(2k − p+ 2)zk−p if k ≥ p

(2p− 2k + 2)̂φ(p+ 2)zp−k if k < p.
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2. Quasihomogeneous and radial Toeplitz operators. In [7], the authors gave
a necessary and sufficient conditions for the product of any two quasihomog-
eneous Toeplitz operators, defined on the Bergman space of the unit disk, to
be a Toeplitz operator. Recently in [5], Dong and Zhou investigated the same
question for Toeplitz operators defined on L2

h but with symbol of the form
eipθrm, where p ∈ Z and m is a positive integer. In the following theorem, we
prove that the product in L2

h of two Toeplitz operators, one quasihomogeneous
and the other radial, is a Toeplitz operator only in the trivial case.

Theorem 2. Let p be a nonzero integer and φ be a bounded nonzero radial func-
tion. If there exists a radial symbol ψ such that TeipθφTψ is a Toeplitz operator,
then ψ must be a constant function.

Proof. First consider p > 0. By [5, Theorem 1.2, page 1767], if the product
TeipθφTψ is a Toeplitz operator, then it must be of the form

TeipθφTψ = Teipθh, (1)

where h is a radial function. Now, using Lemma 1, we show that

TeipθφTψ(zk) = 2(k + 1) ̂ψ(2k + 2)2(k + p+ 1)̂φ(2k + p+ 2)zk+p if k ≥ 0,

and

TeipθφTψ(z̄k)=

{

2(k + 1) ̂ψ(2k + 2)2(k − p+ 1)̂φ(2k − p+ 2)z̄k−p if k ≥ p

2(k + 1) ̂ψ(2k + 2)2(p−k + 1)̂φ(p+ 2)zp−k if 0≤k < p.

Similarly we have

Teipθh(z
k) = 2(k + p+ 1)̂h(2k + p+ 2)zk+p if k ≥ 0,

and

Teipθh(z̄
k) =

{

2(k − p+ 1)̂h(2k − p+ 2)z̄k−p if k ≥ p

2(p− k + 1)̂h(p+ 2)zp−k if 0 ≤ k < p.

Therefore, Eq. (1) together with the above equalities imply

2(k + 1) ̂ψ(2k + 2)̂φ(2k + p+ 2) = ̂h(2k + p+ 2), if k ≥ 0 (2)

2(k + 1) ̂ψ(2k + 2)̂φ(2k − p+ 2) = ̂h(2k − p+ 2), if k ≥ p (3)

2(k + 1) ̂ψ(2k + 2)̂φ(p+ 2) = ̂h(p+ 2), if 0 ≤ k < p (4)

Replacing k by k + p in (3) implies

2(k + p+ 1) ̂ψ(2k + 2p+ 2)̂φ(2k + p+ 2)= ̂h(2k + p+ 2), for all k≥ 0. (5)

Combining (2) and (5), we obtain
(

2(k+1) ̂ψ(2k+2)−2(k+p+1) ̂ψ(2k+2p+2)
)

̂φ(2k + p+ 2)=0

for all k ≥ 0. (6)

Let Z = {k ∈ N : ̂φ(2k + p+ 2) = 0}. Since by hypothesis φ is not identically
zero, Theorem 1 implies that

∑

k∈Zc
1

2k+p+2 = ∞, where Zc is the comple-
mentary of Z in N. Moreover, for all k ∈ Zc, we have
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2(k + 1) ̂ψ(2k + 2) = 2(k + p+ 1) ̂ψ(2k + 2p+ 2).

Let 11 denote the constant function with value one. Since ̂11(z) = 1
z , the above

equation is equivalent to

̂11(2k + 2p+ 2) ̂ψ(2k + 2) = ̂11(2k + 2) ̂ψ(2k + 2p+ 2), for all k ∈ Zc. (7)

Hence, Remark 1 together with [6, Lemma 6, p. 1468] imply that ψ = c11, for
some constant c.

A similar argument shows that the result remains true for p < 0, which
completes the proof. �

In [8], the authors showed that a quasihomogeneous Toeplitz operator,
defined on the analytic Bergman space, commutes with a radial one, only
when the radial symbol of the latter is constant. The same result remains true
in L2

h.

Theorem 3. Let p be a nonzero integer and φ, ψ be two bounded radial func-
tions. If Teipθφ commutes with Tψ, then φ is zero or ψ is constant.

Proof. Let p > 0. If TeipθφTψ = TψTeipθφ, then using Lemma 1, we obtain that
for all k ≥ 0

2(k + p+ 1)̂φ(2k + p+ 2) ̂ψ(2k + 2p+ 2) = 2(k + 1)̂φ(2k + p+ 2) ̂ψ(2k + 2).

Let Z = {k ≥ 0 : ̂φ(2k + p + 2) = 0}. If
∑

k∈Z
1

2k+p+2 = ∞, then Theorem 1
implies that φ is the zero function. Otherwise

∑

k∈Zc
1

2k+p+2 = ∞, where Zc

is the complementary of Z in N. Now, for all k ∈ Zc we have

(2k + 2p+ 2) ̂ψ(2k + 2p+ 2) = (2k + 2) ̂ψ(2k + 2),

which is equivalent to

̂11(2k + 2) ̂ψ(2k + 2p+ 2) = ̂11(2k + 2p+ 2) ̂ψ(2k + 2), for all k ∈ Zc. (8)

Consequently, Remark 1 and [6, Lemma 6, p. 1468] imply that ψ = c11 for
some constant c.

If p < 0, the same result is obtained by considering the adjoint opera-
tors. �

Let f be a bounded function with polar decomposition

f(reiθ) =
∑

n∈Z

einθfn(r). (9)

Then we have the following corollary.

Corollary 1. If ψ is a non-constant bounded radial function such that Tψ com-
mutes with Tf , then f must be a radial function.

To prove Corollary 1, we need the following lemma.

Lemma 2. Let f be bounded function with polar decomposition as in (9) and
ψ be a bounded radial function. Then the product TfTψ is commutative if and
only if Teinθfn

commutes with Tψ, for each n ∈ Z.
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Proof. Since f is a bounded function, it is easy to show that the functions fn
are bounded for all n ∈ Z. For each k > 0 we have:

TfTψ(zk) = (2k + 2) ̂ψ(2k + 2)
∑

n∈Z

Teinθfn
(zk)

= (2k + 2) ̂ψ(2k + 2)

⎛

⎝

∑

n<−k
Teinθfn

(zk) +
∑

n≥−k
Teinθfn

(zk)

⎞

⎠

= (2k + 2) ̂ψ(2k + 2)

(

∑

n<−k
2(−k − n+ 1)̂fn(−n+ 2)z−k−n

+
∑

n≥−k
2(k + n+ 1)̂fn(2k + n+ 2)zk+n

⎞

⎠ .

Straight calculations imply that for all couples of positive integers (j, k):

〈TfTψzk, zj〉 = 2(2k + 2) ̂ψ(2k + 2) ̂fj−k(j + k + 2),

and

〈TfTψzk, zj〉 = 2(2k + 2) ̂ψ(2k + 2) ̂f−j−k(j + k + 2).

Similar results are obtained when we apply TfTψ to zk, for all k > 0.

Henceforth, if ζk(z) =
{

zk for k ≥ 0
z|k| for k < 0

, then

〈TfTψζk, ζj〉 = 2(2k + 2) ̂ψ(2k + 2)Cj,k for all j, k ∈ Z,

where Cj,k is one of the Mellin coefficients ̂fj−k(j + k + 2), ̂f−j−k(j + k + 2),
̂fk−j(j + k + 2) or ̂fk+j(j + k + 2).

Redoing the same process, we have:

〈TψTfζk, ζj〉 = 2(2j + 2) ̂ψ(2j + 2)Cj,k for all j, k ∈ Z.

Now assume TfTψ = TψTf . For each n ∈ Z and for all j, k > 0:

〈Teinθfn
Tψz

k, zj〉 =
{

0 if j �= k + n

2(2k + 2) ̂ψ(2k + 2) ̂fj−k(j + k + 2) if j = k + n

=
{

0 if j �= k + n
〈TfTψzk, zj〉 if j = k + n

=
{

0 if j �= k + n
〈TψTfzk, zj〉 if j = k + n

=
{

0 if j �= k + n

2(2j + 2) ̂ψ(2j + 2) ̂fj−k(j + k + 2) if j = k + n

= 〈TψTeinθfn
zk, zj〉.

Again similar calculations show that for all j, k ∈ Z,

〈Teinθfn
Tψζk, ζj〉 = 〈TψTeinθfn

ζk, ζj〉,
so that for each n ∈ Z, Teinθfn

Tψ = TψTeinθfn
.
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Conversely, suppose that Teinθfn
commutes with Tψ. Then for all j, k ∈ Z,

there exists some n ∈ Z such that

〈TfTψζk, ζj〉 = 〈Teinθfn
Tψζk, ζj〉 = 〈TψTeinθfn

ζk, ζj〉 = 〈TψTfζk, ζj〉. (10)

Hence, TfTψ = TψTf and this completes the proof. �
Proof of Corollary 1. Since Tf commutes with Tψ, Lemma 2 implies Teinθfn

commutes with Tψ, for each n ∈ Z. Therefore, using Theorem 3, we conclude
that fn = 0 for all n �= 0, and hence f = f0.

3. Quasihomogeneous Toeplitz operators of positive degree. In this section,
we shall study the conditions under which two quasihomogeneous Toeplitz
operators of positive degree commute. Direct calculations using Lemma 1 give
the following equations.

Lemma 3. Let p, s be positive integers and φ, ψ be bounded radial functions.
If TeipθφTeisθψ = TeisθψTeipθφ, then the following equations hold:

∗ For all k ≥ 0

(k + p+ 1)̂φ(2k + p+ 2) ̂ψ(2k + 2p+ s+ 2)

= (k + s+ 1)̂φ(2k + 2s+ p+ 2) ̂ψ(2k + s+ 2). (11)

∗ For all k ≥ p+ s

(k − p+ 1)̂φ(2k − p+ 2) ̂ψ(2k − 2p− s+ 2)

= (k − s+ 1)̂φ(2k − 2s− p+ 2) ̂ψ(2k − s+ 2). (12)

∗ For all max(p, s) ≤ k ≤ p+ s

(k − p+ 1)̂φ(2k − p+ 2) ̂ψ(s+ 2)

= (k − s+ 1)̂φ(p+ 2) ̂ψ(2k − s+ 2). (13)

∗ For all 0 ≤ k ≤ min(p, s)

(p− k + 1)̂φ(p+ 2) ̂ψ(2p− 2k + s+ 2)

= (s− k + 1)̂φ(2s− 2k + p+ 2) ̂ψ(s+ 2). (14)

Moreover,
∗ If p ≤ s, then for all p ≤ k ≤ s

(k − p+ 1)̂φ(2k − p+ 2) ̂ψ(s+ 2)

= (s− k + 1)̂φ(2s− 2k + p+ 2) ̂ψ(s+ 2). (15)

Remark 2. It is important to make the distinction between the cases “p ≤ s”
and “p > s”. These two distinct conditions are crucial for the results of Theo-
rem 6 and Theorem 7.

The following theorem shows the uniqueness of the commutant.

Theorem 4. Let p, s be positive integers and let φ be a non-constant bounded
radial function. If there exists a radial function ψ such that Teisθψ commutes
with Teipθφ, then ψ is unique up to a multiplicative constant.
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Proof. Assume there exist two nonzero functions ψ1 and ψ2 such that both
Teisθψ1 and Teisθψ2 commute with Teipθφ. By Eq. (11), we obtain for all k ≥ 0:

(k + p+ 1)̂φ(2k + p+ 2)̂ψ1(2k + 2p + s+ 2)

= (k + s+ 1)̂φ(2k + 2s+ p+ 2)̂ψ1(2k + s+ 2),

and

(k + p+ 1)̂φ(2k + p+ 2)̂ψ2(2k + 2p + s+ 2)

= (k + s+ 1)̂φ(2k + 2s+ p+ 2)̂ψ2(2k + s+ 2).

Let Z = {k ≥ 0 : ̂φ(2k+ p+ 2) = 0}. Using the same argument as in the proof
of Theorem 3, we have that

∑

k∈Zc
1

2k+p+2 = ∞ and also that for all k ∈ Zc:

̂ψ1(2k + 2p+ s+ 2)̂ψ2(2k + s+ 2)

= ̂ψ1(2k + s+ 2)̂ψ2(2k + 2p+ s+ 2). (16)

By Theorem 1, Eq. (16) is equivalent to

r̂sψ1(z + 2p)r̂sψ2(z) = r̂sψ1(z)r̂sψ2(z + 2p) for �z > 0.

Hence, [6, Lemma 6, p. 1468] implies ψ1 = cψ2 for some constant c. �

If two quasihomogeneous symbols have the same degree, then the product
of the associated Toeplitz operators is commutative only in the obvious case.

Theorem 5. Let φ and ψ be bounded radial functions and p be an integer. If
Teipθφ commutes with Teipθψ, then φ = cψ where c is a constant.

Proof. Let p > 0 and assume TeipθφTeipθψ = TeipθψTeipθφ. Then Equation (11)
implies
̂φ(2k + p+ 2) ̂ψ(2k + p+ 2 + 2p) = ̂φ(2k + p+ 2 + 2p) ̂ψ(2k + p+ 2), ∀k ≥ 0.

Now Theorem 1 yields
̂φ(z) ̂ψ(z + 2p) = ̂φ(z + 2p) ̂ψ(z) for �z > 0.

Therefore, [6, Lemma 6, page 1468] provides φ = cψ. If p < 0, the same result
is obtained by taking the adjoint operators. �

Now we shall consider a Toeplitz operator with a monomial symbol. Its
product with a quasihomogeneous Toeplitz operator might be either commu-
tative or not.

Theorem 6. Let p, s be two positive integers with p ≤ s, and α be a positive
real number. If there exists a radial function ψ such that Teisθψ commutes with
Teipθrα , then either s = p and ψ = crα for some constant c, or ψ = 0.

Proof. First, let us assume that ̂ψ(s + 2) �= 0. Since the Mellin coefficients
of the monomial φ : r �→ rα are φ̂(n) = 1

n+α , for n ≥ 0 and since Teipθrα

commutes with Teisθψ, Eq. (15) implies

k − p+ 1
2k − p+ 2 + α

=
s− k + 1

2s− 2k + p+ 2 + α
, for p ≤ k ≤ s.
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Solving the above equality for k yields to 2k = s + p, for k = p, p + 1, . . . , s,
which is impossible unless p = s. Using Theorem 5, we conclude that ψ = crα.

Now, assume that ̂ψ(s+ 2) = 0. Then Equality (14) implies

̂ψ(2k + s+ 2) = 0, for 0 ≤ k ≤ p. (17)

Combining (11) and (17), we obtain

̂ψ(2k + 2p+ s+ 2) = 0, for all 0 ≤ k ≤ p,

or
̂ψ(2k + s+ 2) = 0, for all 0 ≤ k ≤ 2p. (18)

Repeating the same argument, using each time Eq. (11), we show that

̂ψ(2k + s+ 2) = 0, for all k ≥ 0.

Hence, Remark 1 implies ψ = 0. �

In [6], the first author proved that for any choice of triple of positive inte-
gers (m, p, s), there always exists a radial function ψ such that the Toeplitz
operators Teipθr(2m+1)p and Teisθψ, defined on the analytic Bergman space of
the unit disk, commute. We shall show that it is not the case anymore for the
analogous Toeplitz operators defined on L2

h.

Theorem 7. Let p, s, m be positive integers with p > s > 0 and m ≥ 0, and
let φ(r) = rn, where n = (2m+ 1)p.

(i) If p ≥ m + 1 and if there exists a radial function ψ such that Teisθψ

commutes with Teipθrn , then ψ must be the zero function.
(ii) If p ≤ m, there exists a nonzero radial function ψ such that Teisθψ com-

mutes with Teipθrn

Proof. If Teipθφ commutes with Teisθψ, then we must have

TeipθφTeisθψ(zk) = TeisθψTeipθφ(z
k), for all k ≥ 0,

and

TeipθφTeisθψ(z̄k) = TeisθψTeipθφ(z̄
k), for all k ≥ 0.

Therefore, by Lemma 3 and since ̂φ(z) = 1
z+n , we obtain the following equali-

ties

2(k + s+ 1)
̂ψ(2k + s+ 2)

2k + p+ 2s+ n+ 2

= 2(k + p+ 1)
̂ψ(2k + 2p+ s+ 2)

2k + p+ n+ 2
, ∀k ≥ 0. (19)

2(k − s+ 1)
̂ψ(2k − s+ 2)

2k − p− 2s+ n+ 2

= 2(k − p+ 1)
̂ψ(2k − 2p− s+ 2)

2k − p+ n+ 2
, ∀k ≥ p+ s. (20)
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2(k − s+ 1)
̂ψ(2k − s+ 2)
p+ n+ 2

= 2(k − p+ 1)
̂ψ(s+ 2)

2k − p+ n+ 2
, ∀p ≤ k < p+ s. (21)

2(k − s+ 1)
̂ψ(2k − s+ 2)
p+ n+ 2

= 2(p− k + 1)
̂ψ(2p+ s− 2k + 2)

p+ n+ 2
, ∀s ≤ k < p. (22)

(s− k + 1)
̂ψ(s+ 2)

p+ 2s− 2k + n+ 2

= (p− k + 1)
̂ψ(2p+ s− 2k + 2)

p+ n+ 2
, ∀0 ≤ k < s. (23)

Now it is easy to see that Eqs. (19) and (20) are equivalent. In fact, by taking
j = k − p − s in Eq. (20), we obtain Eq. (19). We shall then use Eq. (19)
to determine the form of the radial symbol ψ. By setting z = 2k + 2, we
complexify Eq. (19) and we obtain

z + 2s
z + p+ 2s+ n

̂ψ(z + s) =
z + 2p

z + p+ n
̂ψ(z + 2p+ s) for �z > 0.

Here, we notice that the function

f(z) =
z + 2s

z + p+ 2s+ n
̂ψ(z + s) − z + 2p

z + p+ n
̂ψ(z + 2p+ s)

is analytic and bounded in the right half-plane and vanishes for z = 2k + 2,
for any k ≥ 0. Hence, by Theorem 1, we have f(z) ≡ 0. Therefore, we obtain
that in the right half-plane

̂rsψ(z + 2p)
̂rsψ(z)

=
(z + 2s)(z + p+ n)

(z + p+ 2s+ n)(z + 2p)
, for �z > 0. (24)

Since n = (2m + 1)p and using the well-known identity Γ(z + 1) = zΓ(z),
where Γ is the Gamma function, we can rewrite Eq. (24) as

̂rsψ(z + 2p)
̂rsψ(z)

=
F (z + 2p)
F (z)

for �z > 0, (25)

where F (z) =
Γ( z2p + s

p )Γ( z2p +m+ 1)

Γ( z2p + s
p +m+ 1)Γ( z2p + 1)

. Next, Eq. (25), combined with

[6, Lemma 6, page 1468], implies there exists a constant C such that

̂rsψ(z) = CF (z), for �z > 0. (26)

Now, we shall show that F (z) is the Mellin transform of a bounded function.
Using the well-known property of the Gamma function namely

Γ(z + n) = (z + n− 1)(z + n− 2) . . . zΓ(z) for n ∈ N,
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and after simplification, we obtain that

F (z) =
( z2p +m) . . . ( z2p + 1)

( z2p + s
p +m) . . . ( z2p + s

p )
,

which is a proper fraction in z and can be written as sum of partial fractions

F (z) =
m
∑

j=0

aj
z + 2s+ 2jp

=
m
∑

j=0

aj ̂r2s+2jp(z).

Therefore, Eq. (26) and Remark 1 imply that

ψ(r) =
m
∑

j=0

cjr
s+2jp. (27)

At this point, let us summarize what we have done so far. We proved that if
there exists a radial function ψ such that Teisθψ commutes with Teipθrn , then ψ
is given by Eq. (27). The rest of the proof will be dedicated to whether or not
there exist nonzero coefficients cj , 0 ≤ j ≤ m, such that ψ verifies Eqs. (21),
(22) and (23). In fact, since ̂ψ(z) =

∑m
j=0

cj

z+s+2jp , these three equations can
be written as a homogeneous linear system in the following way

⎛

⎜

⎜

⎜

⎜

⎝

A
− − −−

B
− − −−

C

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎝

c0
...
cm

⎞

⎟

⎠ =

⎛

⎜

⎝

0
...
0

⎞

⎟

⎠ , (28)

where
∗ The block A is of size s× (m+ 1) and its entries are given by:

akj =
s− k + 1

(p+ 2s− 2k + n+ 2)(s+ jp+ 1)

− p− k + 1
(p+ n+ 2)(p+ s− k + jp+ 1)

,

for 0 ≤ k < s and 0 ≤ j ≤ m.
∗ The block B is of size (p− s) × (m+ 1) and its entries are given by:

bkj =
p− k + 1

(j + 1)p+ s− k + 1
− k − s+ 1
k + jp+ 1

,

for s ≤ k < p and 0 ≤ j ≤ m.
∗ The block C is of size s× (m+ 1) and its entries are given by:

ckj =
k − p+ 1

(2k − p+ n+ 2)(s+ jp+ 1)
− k − s+ 1

(p+ n+ 2)(k + jp+ 1)
,

for p ≤ k < p+ s and 0 ≤ j ≤ m.
Before discussing the existence of solutions for our homogeneous system (28),
we will make three crucial observations:

• as−l,j = cp+l,j , for all 1 ≤ l ≤ s− 1 and 0 ≤ j ≤ m,
• cpj = − bsj

p+n+2 , for all 0 ≤ j ≤ m,
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• The rows of the blocks A and B are linearly independent.
Hence we can reduce the system (28) to only the blocks A and B and get rid
of the block C. Moreover our system will always be of rank p (the s rows of
the block A are linearly independent of the p−s rows of the block B). Finally,
we conclude by saying the following:

(i) If p ≥ m+1, the homogeneous system (28) has more linearly independent
equations than unknowns. In this case the only possible solution is the
trivial solution i.e. cj = 0 for all 0 ≤ j ≤ m, and therefore ψ is the zero
function.

(ii) If p ≤ m, the system (28) has less equations than unknowns. In this case,
there exist nonzero coefficients cj which verifies (28), and hence ψ exists.
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