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1 Matrix nearness problems

Given a matrix F ∈ IRn×n then consider the

problem

minimize
D

‖F − D‖ (‖F − D‖ ≤ ε|F |)

Such that D has property P

P can be any one or mixture of:

* Symmetry

* Skew-Symmetry

* Poitive semi-definiteness

* Orthogonality, Unitary

* Normality

* Rank-deficiency, Singularity
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* D in a linesr space

* D with some fixed columns, rows, subma-

trix

* Instability

* D with a given λ, repeated λ

* D is Euclidean Distance Matrix

* D is Toeplitz or Hankel
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2 Hybrid Methods for Finding the
Nearest Euclidean Distance Matrix

Definition
A matrix D ∈ IRn×n is called a Euclidean dis-

tance matrix iff there exist n points x1, . . . ,xn

in an affine subspace of dimension IRm (m ≤
n− 1) such that

dij = ‖xi − xj‖2
2 ∀i, j. (1)

The Euclidean distance problem can now be
stated as follows. Given a matrix F ∈ IRn×n,
find the Euclidean distance matrix D ∈ IRn×n

that minimizes

‖F −D‖F (2)

where ‖.‖F denotes the Frobenius norm. see
Al-Homidan and Fletcher [1]
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3 Educational Testing Problem

The educational testing problem. can be ex-
pressed as

maximize eTθ θ ∈ IRn

subject to F − diag θ ≥ 0

θi ≥ 0 i = 1, ..., n (3)

where e = (1, 1, ..., 1)T . An equivalent form of
(3) is

minimize eTx x ∈ IRn

subject to F̄ + diag x ≥ 0

xi ≤ vi i = 1, ..., n (4)

where F̄ = F − Diag F and diag v = Diag F.
Where this problem is expressed later as ma-

trix nearness approximated to a matrix satisfy
certain conditions.

see Al-Homidan [2]
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4 Hybrid Methods for Minimizing
Least Distance Functions with
Semi-Definite Matrix Constraints

We are interested here in problems in which
only the diagonal of the matrix is allowed to
change, in the following way. Given a symmet-
ric positive definite matrix F ∈ IRn×n then we
consider the problem

minimize ‖a − x‖2
2 x ∈ IRn

subject to F̄ + diag x ≥ 0, x ≤ v(5)

where a is an initial point and then we have
a different problem with every different a.

Also this problem is expressed later as ma-
trix nearness approximated to a matrix satisfy
certain conditions.

see Al-Homidan [3]
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5 The Problem

The problem we are interested in is the best

approximation of a given matrix D by a pos-

itive semidefinite symmatric Toeplitz matrix.

Related problems occur in many engineering

and staistical applications [4], especially in the

area of signal processing. Because of rounding

errors or truncation errors incurred when eval-

uating F , F does not satisfy one or all condi-

tions. Toeplitz matrix approximation are dis-

cussed in [6],[9] and [5]

We consider the following problem: Given a

data matrix F ∈ IRn×n find the nearest symmet-

ric positive semi-definite toeplitz matrix D to

F . Use of the Frobenius norm as a measure
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gives rise to the problem

minimize Φ = ‖F − D‖

subject to D ∈ K. (6)

where K is the set of all n× n symmetric posi-

tive semi-definite toeplitz matrices

K = {A : A ∈ IRn×n, AT = A, A ≥ 0 and A ∈ T}
(7)

where T the set of all toeplitz matrices.

The problem is formulated as a nonlinear

minimization problem, with positive semi-definite

toeplitz matrix as constraints. Then a com-

putational framework is given. An algorithm

with rapid convergence is obtained by l1Sequential

Quadratic Programming method.
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Theorem

Problem(6) has a unique solution for rank

F m = n or m = n− 1 if the data matrix in not

positive semi-definite. In all other cases there

exists a solution which may not be unique.

6 l1SQP Method

This section contains a brief description of

the l1SQP method for solving (6).

It is difficult to deal with the matrix cone

constraints in (7) since it is not easy to spec-

ify if the elements are feasible or not. Using

partial LDLT factorization of A, this difficulty

is rectified. Since m, the rank of A∗, is known,

then for A sufficiently close to A∗, the partial
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factors A = LDLT can be calculated where

L =
 L11

L21 I

 , D =
 D1

D2

 , A =
 A11 AT

21

A21 A22

 .

where L11, D1 and A11are m×m matrices, I, D2

and A22are n−m× n−m matrices, L21 and A21

are n −m ×m matrices, and D2 has no partic-

ular structure other than symmetry. At the

solution D2 = 0. In general

D2(A) = A22 − A21A
−1
11 AT

21, (8)

this expression enables the constraint D ∈ k to

be written in the form

D2(D) = 0 (9)

Then problem (6) can be expressed as

minimize Φ

subject to D2(D) = 0 = ZTDZ, (10)
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where

Z =
−A−1

11 AT
21

I


the basis matrix for the null space of D when

D2 = 0. The Lagrange multipliers for the con-

straint (9) is Λ relative to the basis Z and the

Lagrangian for porblem (10) is

L(x(k), Λ(k), π(k)) = Φ− Λ : ZTDZ (11)

Since D is toeplitz matrix the D have the

following structure

D =


x1 · · · xn
... . . . ...

xn · · · x1

 (12)

then

Φ =
n∑

i,j=1
(fij − dij)

2

=
n∑

i,j=1
(fij − x|i−j+1|)

2. (13)
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and

5Φ = [
∂Φ

∂x1
· · · ∂Φ

∂xn
]2

where ∇ denotes the gradient operator

(∂/∂x1, . . . , ∂/∂xr)
T , therefore

∂Φ

∂x1
= 2

n∑
i=1

(x1 − fii)

and

∂Φ

∂xs
= 2{

n−s∑
i=1

(xs+1 − fi+s,i) + (xs+1 − fi,i+s)}

where s = 1, · · · , n − 1. Differentiating again

gives
∂2Φ

∂xr∂xs
= 0 if r 6= s,

∂2Φ

∂x2
1

= 2(n)

and
∂2Φ

∂x2
s+1

= 4(n− s) (14)
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where s, r = 1, · · · , n− 1.

The simple form of (8) is utilized by writing

the constraints D2(D) = 0 in the following form

dii(x) = x1 −
r∑

k,l=1
xi−k+1[A

−1
11 ]kl xi−l+1 = 0

dij(x) = x|i−l+1| −
r∑

k,l=1
x|i−k+1|[A

−1
11 ]kl x|i−l+1| = 0

where i, j = m + 1, · · · , n and [A−1
11 ]st means the

element of A−1
11 in st position.

Thus (10) expressed as

minimize Φ =
n∑

i,j=1
(fij − x|i−j+1|)

2.

subject to dij(x) = 0 (15)

In order to write down the SQP method ap-

plied to (15) it is necessay to derive first and

second derivatives of dij which enables a sec-

ond order rate of convergence to be achieved.

Now
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Differentiating A11A
−1
11 = I gives

∂A11

∂xs
A−1

11 + A11
∂A−1

11

∂xs
= 0 s = 1, . . . , n− 1

⇒ A11
∂A−1

11

∂xs
= − ∂A11

∂xs
A−1

11

then

∂A−1
11

∂xs
= − A−1

11

∂A11

∂xs
A−1

11 ,

but since

∂A11

∂xs
= Is

where Is is m×m matrix given by

15



Is =



0 0 · · · 0 1 0 · · · 0
0 0 · · · 0 0 1 · · · 0
... ... . . . ... ... ... . . . ...
0 0 · · · 0 0 0 · · · 1
1 0 · · · 0 0 0 · · · 0
0 1 · · · 0 0 0 · · · 0
... ... . . . ... ... ... . . . ...
0 0 · · · 1 0 0 · · · 0



where the ”1” appearing in the first row is in

the sth column and the ”1” appearing in the

first column is in the sth row. Hence the ma-

trix Is is a matrix that contains ”1”s in two off

diagonal and zeros elsewhere.

∂A−1
11

∂xs
= − A−1

11 Is A−1
11 . (16)

Hence from (8)

16



∂D2

∂xs
=

∂

∂xs
(A22 − A21A

−1
11 AT

21)

= IIs − IIIsA
−1
11 AT

21 + A21A
−1
11 IsA

−1
11 AT

21

− A21A
−1
11 IIIT

s

where
∂A22

∂xs
= IIs

and
∂A21

∂xs
= IIIs

matrices similar to Is with IIs n−m×n−m ma-

trix contains ones in two off diagonal and zeros

elsewhere and IIIs n−m×m matrix contains

ones in one off diagonal and zeros elsewhere.

Let

V T = −AT
21A

−1
11 and W = IIIsV
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then (17) become

∂D2

∂xs
= IIs + V TIsV + W T + W

Furthermore differentiating (16)

∂2D2

∂xs∂xr
= Y + Y T

where

Y = −ZT
r A−1

11 Zs and Zt = ItV − IIIT
t

Therefore

∂2dij

∂xs∂xr
= yij + yji

where i, j = m + 1, · · · , n.

Now let

W = ∇2L(x, Λ)

= ∇2Φ −
n∑

i,j=m+1
λij∇2dij (17)
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where ∇2Φ given by (14) and

n∑
i,j=m+1

λij∇2dij =



∑
i,j λij

∂2dij

∂x1∂x1
· · · ∑

i,j λij
∂2dij

∂x1∂xn
... . . . ...∑

i,j λij
∂2dij

∂xn∂x1
· · · ∑

i,j λij
∂2dij

∂xn∂xn


Therefore the SQP method applied to (15) re-

quires the solution of the QP subproblem

minimize
δ

Φ +∇ΦTδ + 1
2δ

TWδ δ ∈ IRm

subject to dij +∇dT
ijδ = 0 i, j = m + 1, . . . , n (18)

giving a correction vector δ(k), so that x(k+1) =

x(k) + δ(k). Also the Lagrange multipliers of the

equations in (18) become the elements λ
(k+1)
ij

for the next iteration. Usually ∇2L is positive

definite in which case, if x(k) is sufficiently close

to x∗, the basic SQP method converges and the

rate is second order (e.g. Fletcher [8])

19



An algorithm with better convergence prop-

erties is suggested by Fletcher [7] in which a

different subproblem to (18) is solved expressed

as

minimize
δ

Φ +∇ΦTδ + 1
2δ

TWδ + σ ∑ | dij +∇dT
ijδ|

subject to‖δ‖ ≤ ρ (19)

The solution δ(k) of this problem is used in the

same way as with (18).

Conclusions

In this paper we have studied certain problems involving the pos-
itive semi-definite matrix constraint, with the involving l1SQP
method. Also some Numerical works needs to be done.
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