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1 Matrix nearness problems

Given a matrix F € IR™" then consider the

problem
minimize | — D (|IFF — DJ <¢€|F|)

Such that D has property P

P can be any one or mixture of:

*  Symmetry

*  Skew-Symmetry

* Poitive semi-definiteness
* Orthogonality, Unitary

*  Normality

*

Rank-deficiency, Singularity
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* D in a linesr space

* D with some fixed columns, rows, subma-

trix
* Instability

* D with a given )\, repeated A
* D is Euclidean Distance Matrix

* D is Toeplitz or Hankel



2 Hybrid Methods for Finding the
Nearest Euclidean Distance Matrix

Definition
A matrix D € IR"" is called a Euclidean dis-
tance matrix iff there exist n points xy,....,x,

in an affine subspace of dimension [R" (m <
n — 1) such that

dij = ||x; — x|3 Vi, j. (1)

The Euclidean distance problem can now be
stated as follows. Given a matrix F ¢ IR"*",

find the Euclidean distance matrix D € [R"*"
that minimizes

|F'— Dlr (2)

where ||.||r denotes the Frobenius norm. see
Al-Homidan and Fletcher [1]



3 Educational Testing Problem

The educational testing problem. can be ex-
pressed as

maximize e’8 6 < IR"
subject to F — diag 8 > 0
0, >0 di=1,..n (3
where e = (1,1,...,1)!. An equivalent form of
(3) is
minimize e’x x € IR"

subject to F + diag x > 0
X; < U; Z':l,...,n (4)

where F' = [ — Diag I and diag v = Diag F.

Where this problem is expressed later as ma-
trix nearness approximated to a matrix satisfy
certain conditions.

see Al-Homidan |2]



4 Hybrid Methods for Minimizing
Least Distance Functions with
Semi-Definite Matrix Constraints

We are interested here in problems in which
only the diagonal of the matrix is allowed to
change, in the following way. Given a symmet-
ric positive definite matrix F € IR"*" then we
consider the problem

minimize |la — x||3

x € IR"
subject to F' + diag x > 0,

x < V()

where a is an initial point and then we have

a different problem with every different a.
Also this problem is expressed later as ma-

trix nearness approximated to a matrix satisfy
certain conditions.

see Al-Homidan [3]



5 The Problem

The problem we are interested in is the best
approximation of a given matrix D by a pos-
itive semidefinite symmatric Toeplitz matrix.
Related problems occur in many engineering
and staistical applications [4], especially in the
area of signal processing. Because of rounding
errors or truncation errors incurred when eval-
uating F', F' does not satisfy one or all condi-
tions. Toeplitz matrix approximation are dis-
cussed in [6],[9] and [5]

We consider the following problem: Given a
data matrix F' € IR"*" find the nearest symmet-
ric positive semi-definite toeplitz matrix D to

F'. Use of the Frobenius norm as a measure



gives rise to the problem

minimize & = ||FF — D||
subject to D € K. (6)

where K is the set of all n x n symmetric posi-

tive semi-definite toeplitz matrices

K={A:AcR"™ A" = A A>0 and A € T}
(7)
where 1" the set of all toeplitz matrices.

The problem is formulated as a nonlinear
minimization problem, with positive semi-definite
toeplitz matrix as constraints. Then a com-
putational framework is given. An algorithm
with rapid convergence is obtained by /;Sequential

Quadratic Programming method.



Theorem

Problem(6) has a unique solution for rank
F'm=nor m=n-—1 if the data matrix in not
positive semi-definite. In all other cases there

exists a solution which may not be unique.

6 [{SQP Method

This section contains a brief description of
the [;SQP method for solving (6).

It is difficult to deal with the matrix cone
constraints in (7) since it is not easy to spec-
ify if the elements are feasible or not. Using
partial LDL' factorization of A, this difficulty
is rectified. Since m, the rank of A*, is known,

then for A sufficiently close to A*, the partial
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factors A = LDL! can be calculated where

L1y ] {Dl [All A2Tl]
I = D — A = |
L21 1]’ D2 A21 A22

where L;;, D; and A;;are m x m matrices, I, D,
and Aypare n —m X n —m matrices, Lo and Ay
are n — m X m matrices, and [, has no partic-
ular structure other than symmetry. At the

solution Dy = 0. In general
Dy(A) = Ay — AnAj'Ay, (8)

this expression enables the constraint D € k to

be written in the form
Dy(D) =0 (9)
Then problem (6) can be expressed as
minimize ¢
subject to Do(D) = 0=2'DZ, (10)
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where

— A Ay
I

the basis matrix for the null space of D when

-

Dy = 0. The Lagrange multipliers for the con-
straint (9) is A relative to the basis Z and the
Lagrangian for porblem (10) is

Lx® AW 70y = &N ZTDZ  (11)

Since D is toeplitz matrix the D have the

following structure

:Cl « o o :Cn
(12)

then

O = ¥ (fij—dij)

1,7=1

= > (fij — @imj1)”. (13)

1,7=1
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and

0P 0P
d = [— ... 2
where V denotes the gradient operator
(0/0xy, ..., 0/0x,)!, therefore
0P n
6331 zg ( fzz>
and
0D n—s
O 2{51 (Tsy1 = firsi) + (Tsr1— fiivs)}
where s = 1,---.,n — 1. Differentiating again
gives
0°P ,
Oror. 0 if  r# s,
0°d
— =2
0x? ()
and ,
0°P
= 4(n — s) (14)




where s,7r=1,---.n — 1.
The simple form of (8) is utilized by writing

the constraints Dy(D) = 0 in the following form

T

du'(X> — 21— MZ_1 ﬂiz'—kﬂ[Aﬁl]kz T 41 =70
Y . _1
dz’j<X) = Lyj—141| — klz_1$\¢—k+1|[1411 ]kl Lli-l+1] = 0
where i, =m+1,---,n and [A{]s means the

element of A;! in st position.

Thus (10) expressed as

minimize ¢ = %1(]"@] — Tjy))
1,]=—
subject to d;;(x) = 0 (15)
In order to write down the SQP method ap-
plied to (15) it is necessay to derive first and
second derivatives of d;; which enables a sec-

ond order rate of convergence to be achieved.

Now
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Differentiating A A7l = I gives

0A1; 5’A1_11
A + A = 0 = 1....
01 ey ° ’
OAT! 0A
;‘ A = a0
then
OAT! 0A
axll - Alll axllA:ll?
but since
0A
0x

where [, is m X m matrix given by
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0 0 0O 1 0 0
0 0 0 0 1 0
j 0 O 0 0 0 1
11 0 0O 0 O 0
0 1 0O 0 O 0
0o 0 -~ 1 0 0 - 0]

where the ”1” appearing in the first row is in
the sth column and the ”1” appearing in the
first column is in the sth row. Hence the ma-
trix /. is a matrix that contains ”’1”s in two off

diagonal and zeros elsewhere.

AT
0x
Hence from (8)

= — A I AL (16)
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oD 0
8352 = 5, (An - An Ay Az)

= JI,— IIIAAL + Ay AMLAG AL

— Ag AT
where
8(9@232 =15
and
aai? = I11I,

matrices similar to /I, with I/, n—m xXn—m ma-
trix contains ones in two off diagonal and zeros
elsewhere and /I, n — m X m matrix contains
ones in one off diagonal and zeros elsewhere.

Let

VIie_AL AL and W =IILV
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then (17) become

oD
L I+ VIV W W
0x
Furthermore differentiating (16)
0Dy
=Y +Y"
0x,0x, i

where

Y=-Z'AlZ, and Z, =LV —III}

Therefore
0*d;;
0z ,0x, = Vit i
where i, =m+1,---,n.
Now let
W = V2L(x,A)
=V —  y AV (17)

1,)=m-+1
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where V20 given by (14) and

02d; 0%d;; 1
V2. Z Z]axlaxl >i.j Awaxlaxn
Z ij iy
i,j=m+l By 9% SPY " 0%y,

Therefore the SQP method applied to (15) re-
quires the solution of the QP subproblem

mini(smize d+ V' + l5TI/V5 0 ¢ R™
subject to d;; + VdT(S =0145=m+1,...,n(18)

giving a correction vector 5(]“), so that xFt1) =

) + 6% Also the Lagrange multipliers of the
equations in (18) become the elements )\(kH)
for the next iteration. Usually V2L is positive
definite in which case, if x*) is sufficiently close
to x*, the basic SQP method converges and the

rate is second order (e.g. Fletcher [8])
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An algorithm with better convergence prop-
erties is suggested by Fletcher [7] in which a
different subproblem to (18) is solved expressed

as
minignize ®+ V'S + %ETWﬁ +ox| dij+ Vd;;0|
subject tol|d]| < p (19)

The solution 8% of this problem is used in the

same way as with (18).

Conclusions

In this paper we have studied certain problems involving the pos-
itive semi-definite matrix constraint, with the involving [{SQP
method. Also some Numerical works needs to be done.
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