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Abstract

Given an n×n matrix F, we find the nearest symmetric positive semi-definite
Toeplitz matrix T to F . The problem is formulated as a nonlinear minimization
problem with positive semi-definite Toeplitz matrix as constraints. Then a
computational framework is given. An algorithm with rapid convergence is
obtained by l1Sequential Quadratic Programming (SQP) method.

Key words : non-smooth optimization, positive semi-definite matrix, Toeplitz ma-
trix, SQP method, l1SQP Method.
AMS (MOS) subject classifications 65F99, 99C25, 65F30

1 Introduction

The problem we are interested in is the best approximation of a given matrix by a
positive semi–definite symmetric Toeplitz matrix. Toeplitz matrices appear naturally
in a variety of problems in engineering. Since positive semi–definite Toeplitz matrices
can be viewed as shift invariant autocorrelation matrices, considerable attention has
been paid to them, especially in the areas of stochastic filtering and digital signal
processing applications [7] and [12]. Several problems in digital signal processing and
control theory require the computation of a positive definite Toeplitz matrix that
closely approximates a given matrix. For example, because of rounding or truncation
errors incurred while evaluating F , F does not satisfy one or all conditions. Another
example in the power spectral estimation of a wide–sense stationary process from a
finite number of data, the matrix F formed from the estimated autocorrelation co-
efficients, is often not a positive definite Toeplitz matrix [11]. In control theory, the
Gramian assignment problem for discrete–time single input system requires the com-
putation of a positive definite Toeplitz matrix, which also satisfies certain inequality
constraints [9].

We consider the following problem: Given a data matrix F ∈ IRn×n, find the
nearest symmetric positive semi-definite Toeplitz matrix T to F and rank T = m.
Use of the Frobenius norm as a measure gives rise to

minimize φ = ‖F − T‖
subject to T ∈ K, (1.1)
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where K is the set of all n× n symmetric positive semi-definite Toeplitz matrices

K = {T : T ∈ IRn×n, T T = T, T ≥ 0 and T ∈ T } (1.2)

where T is the set of all Toeplitz matrices.
The problem is formulated as a nonlinear minimization problem with positive

semi-definite Toeplitz matrix as constraints. Then a constraints formulation is given.
An algorithm with rapid convergence is obtained by the l1Sequential Quadratic Pro-
gramming method. In Section 4 we give some numerical examples.

A symmetric Toeplitz matrix T is denoted by

T =


t1 t2 . . . tn
t2 t1 . . . tn−1
...

...
. . .

...
tn tn−1 . . . t1

 = Toeplitz(t1, t2, . . . , tn). (1.3)

Matrices innerproduct is defined by

A : B =
∑

aijbij + tr(AT B)

2 Constraints Formulation

It is difficult to deal with the matrix cone constraints in (1.2) since it is not easy to
specify if the elements are feasible. Using partial LDLT factorization of T , this diffi-
culty can be overcome. Since m, the rank of T , is known, therefore for F sufficiently
close to T , the partial factors T = LDLT can be calculated such that

L =
[
L11

L21 I

]
, D =

[
D1

D2

]
, T =

[
T11 T T

21

T21 T22

]
, (2.1)

where L11, D1 and T11 are m × m matrices; I, D2 and T22 are n − m × n − m
matrices; L21 and T21 are n − m × m matrices; D1 is diagonal and D1 > 0 and D2

has no particular structure other than symmetry. At the solution, D2 = 0 and T is
symmetric positive semi-definite Toeplitz matrix. In general,

D2(T ) = T22 − T21T
−1
11 T T

21. (2.2)

Now if the structure of the matrix T is in a Toeplitz form, i.e.

T = Toeplitz(x1, x2, . . . , xn), (2.3)
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then (2.2) enables the constraint T ∈ K to be written in the form

D2(T (x)) = 0 (2.4)

Hence, (1.1) can now be expressed as

minimize φ

subject to D2(T ) = 0 = ZT TZ, (2.5)

where

Z =
[−T−1

11 T T
21

I

]
is the basis matrix for the null space of T when D2 = 0. The Lagrange multipliers
for the constraint (2.4) is Λ relative to the basis Z and the Lagrangian for porblem
(2.5) is

L(x(k), Λ(k)) = φ− Λ : ZT TZ. (2.6)

This approach has been studied in a similar way by [5].

3 The SQP Algorithms

In this section various iterative schemas are investigated in order to develop an algo-
rithms for solving problem (2.5). We use techniques related to SQP which provide
global convergence at a second order rate. The structure of the Toeplitz matrix T
has been given in (2.3), then

φ =
n∑

i,j=1

(fij − aij)
2

=
n∑

i,j=1

(fij − x|i−j+1|)
2, (3.1)

and5φ = (∂φ/∂x1, . . . , ∂φ/∂xn)T where∇ denotes the gradient operator (∂/∂x1, . . . , ∂/∂xn)T .
Therefore

∂φ

∂x1

= 2
n∑

i=1

(x1 − fii)

and
∂φ

∂xs+1

= 2{
n−s∑
i=1

(xs+1 − fi+s,i) + (xs+1 − fi,i+s)}

where s = 1, · · · , n− 1. Differentiating again gives

∂2φ

∂xr∂xs

= 0 if r 6= s,
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∂2φ

∂x2
1

= 2(n)

and
∂2φ

∂x2
s+1

= 4(n− s) (3.2)

where s = 1, · · · , n− 1.
The advantage of formula (2.4) is that expressions for both first and second deriva-

tives of the constraints with respect to the elements of T can be obtained. The simple
form of (2.2) is utilized by writing the constraints D2(T ) = 0 in the following form:

dij(x) = x|i−j+1| −
m∑

k,l=1

xi−k+1[T
−1
11 ]kl xj−l+1 = 0

where i, j = m + 1, · · · , n and [T−1
11 ]kl denotes the element of T−1

11 in kl–position.
Thus (2.5) can be expressed as

minimize φ =
n∑

i,j=1

(fij − x|i−j+1|)
2.

subject to dij(x) = 0 (3.3)

In this problem, since the equivalent constraints dij(x) = 0 and dji(x) = 0 are both
present, they would be stated only for i ≥ j.

In order to write down the SQP method applied to (3.3), it is necessay to derive
first and second derivatives of dij which enable a second order rate of convergence to
be achieved.

Let Is be an m×m matrix given by

Is = Toeplitz(0, . . . , 0, 1, 0, . . . , 0),

where the “1” appears in the s-position. Hence the matrix Is is a matrix that contains
“1”s in two off diagonal and zeros elsewhere. Now differentiating T11T

−1
11 = I gives

∂T11

∂xs

T−1
11 + T11

∂T−1
11

∂xs

= 0 s = 1, . . . , n

⇒ T11
∂T−1

11

∂xs

= − ∂T11

∂xs

T−1
11

then
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∂T−1
11

∂xs

= − T−1
11

∂T11

∂xs

T−1
11 ,

but since

∂T11

∂xs

= Is

then
∂T−1

11

∂xs

= − T−1
11 Is T−1

11 . (3.4)

Hence from (2.2)

∂D2

∂xs

=
∂

∂xs

(T22 − T21T
−1
11 T T

21) (3.5)

= IIs − IIIsT
−1
11 T T

21 + T21T
−1
11 IsT

−1
11 T T

21

− T21T
−1
11 IIIT

s (3.6)

where
∂T22

∂xs

= IIs

and
∂T21

∂xs

= IIIs

are matrices similar to Is with IIs being an n − m × n − m matrix which contains
ones in two off diagonal and zeros elsewhere, and IIIs is an n−m×m matrix which
contains ones in one off diagonal and zeros elsewhere.

Let
V T = −T21T

−1
11 and W = IIIsV

then (3.6) becomes
∂D2

∂xs

= IIs + V T IsV + W T + W

Furthermore, differentiating (3.4), we get

∂2D2

∂xs∂xr

= Y + Y T

where
Y = −ZT

r T−1
11 Zs and Zt = ItV − IIIT

t

Therefore
∂2dij

∂xs∂xr

= yij + yji
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where i, j = m + 1, · · · , n.
Now let

W = ∇2L(x, Λ)

= ∇2φ −
n∑

i,j=m+1

λij∇2dij (3.7)

where ∇2φ is given by (3.2) and

n∑
i,j=m+1

λij∇2dij =


∑

i,j λij
∂2dij

∂x1∂x1
· · · ∑

i,j λij
∂2dij

∂x1∂xn

...
. . .

...∑
i,j λij

∂2dij

∂xn∂x1
· · · ∑

i,j λij
∂2dij

∂xn∂xn


Therefore, the SQP method applied to (3.3) requires the solution of the QP
subproblem

minimizeδ φ +∇φT δ + 1
2
δT Wδ δ ∈ IRm

subject to dij +∇dT
ijδ = 0 i, j = m + 1, . . . , n (3.8)

giving a correction vector δ(k), so that x(k+1) = x(k) + δ(k). Also, the Lagrange mul-
tipliers of the equations in (3.8) become the elements λ

(k+1)
ij for the next iteration.

Usually, ∇2L is positive definite, in which case, if x(k) is sufficiently close to x∗, the
basic SQP method converges and the rate is second order (Fletcher [6]). Globally,
however (3.8) may not converge. An algorithm with better convergence properties,
when x(k) is remote from x∗, is suggested by Fletcher [4] in which a different sub-
problem to (3.8) is solved using the expression

minimizeδ φ +∇φT δ + 1
2
δT Wδ + σ

∑ | dij +∇dT
ijδ|

subject to‖δ‖ ≤ ρ. (3.9)

The solution δ(k) of this problem is used in the same way as with (3.8).
This description of iterative schemes for solving (3.3) has so far ignored an im-

portant constraint that is D1 > 0 in which the varibles x(k) must permit the matrix
T (k) to be factorized as in (2.1). However if m is identified correctly and x(k) is near
the solution this restriction will usually be inactive at the solution. If x(k) is remote
from the solution additional constraints are introduced

d(k)
rr + ∇d(k)T

rr δ > 0. r = 1, 2, . . . ,m

However, strict inequalities are not permissible in an optimization problem and it is
also advisable not to allow drr(x

(k) + δ) to become too close to zero, especially for
small r, as this is likely to cause the factorization to fail. Hence the constraints

∇d(k)T
rr δ ≥ −rd(k)

rr /m r = 1, 2, . . . ,m
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are added to the subproblems (3.8) and (3.9). Finally, it may be that partial factors
of the matrix T (k) in the form (2.1) do not exist for some iterates. In this case the
parameters ρ(k+1) = ρ(k)/4, x(k+1) = x(k) and Λ(k+1) = Λ(k) are chosen for the next
iteration in the trust region method.

4 Numerical Examples and Results

For testing the algorithms described above, the following examples are considered:
Example 1.
Consider problem (3.3) in which

F =

 3 2 3
2 4 1
3 1 5

 , and m = 2 (4.1)

The solution is

T ∗ =

 3.6 1.5 3.6
1.5 3.6 1.5
3.6 1.5 3.6

 (4.2)

T ∗ is Toeplitz positive semi–definite. Its partial factors are

D =

 3.6 0 0
0 2.975 0
0 0 0

 , and L =

 1 0 0
0.41671 1 0

1 0 1



Example 2.
Another example for which n = 4 is

F =


3 2 3 4
5 7 2 −1
6 2 5 4
5 3 1 2

 , with m = 1. (4.3)

Let

T ∗ =


x y z u
y x y z
z y x y
u z y x

 . (4.4)

In general, when n = 4, the number of constraints is six, of which three are:

d22 = x2 − y2 = 0 =⇒ x = y, d33 = x2 − z2 = 0 =⇒ x = z
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and
d44 = x2 − u2 = 0 =⇒ x = u.

Therefore
x = y = z = u

and this satisfies the rest of the constraints. Hence the problem will be reduced to
minimizing

φ = 16x2 − 106x + c (4.5)

where c is a constant. Thus the minimum value of φ is for x = 106/32. However, if
the required rank is two, then we have three new constraints d33 = 0, d44 = 0 and
d34 = 0. One of these constraints is

d33 = x3 − 2xy2 − xz2 + 2zy2 = 0 =⇒ x = z.

This reduces the next constraint to

d44 = x3 − xy2 − xz2 − xu2 + 2yzu = (y − u)2 = 0 =⇒ y = u,

and this satisfies the constraint d34. Hence the problem will be reduced to minimizing

φ = 8x2 − 56x + 8y2 − 50y + c (4.6)

where c is a constant. Thus the minimum value of φ is for x = z = 56/16 and for
y = u = 50/16.

The algorithm has been tested on randomly generated matrices with values dis-
tributed between 10−3 and 103. A Fortran codes have been written to program
solver for (3.9) using filterSQP. ‖F (k) − F (k−1)‖ < 10−5. Table 1 summarizes
the results for the filterSQP Algorithm,

For algorithms, the housekeeping associated with each iteration is O(n2). Also, if
care is taken, it is possible to calculate the gradient and Hessian in O(n2) operations.
For the filter-SQP algorithm, the initial value m(0) is tabulated, and m is increased
by one until the solution is found. The total number of iterations is tabulated, and
within this figure, it is found that fewer iterations are required as m increases. Also
the initial value m(0) is rather arbitrary: a smaller value of m(0) would have given an
even larger number of iterations.

5 Conclusions

In this paper we have studied the Toeplitz matrix approximation problem involving
the positive semi-definite matrix constraint, using the l1SQP method. Some Nu-
merical examples are also given. However, the problem needs more study in terms
of hybrid methods involving both the current method and a projection method, see
[10]. Also some numerical experiments need to be carried out.
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n m(0) m∗ Number of iteration φ
by filterSQP

4 1 1 10 2644.1
4 1 3 36 2656.5
5 2 4 29 4013.6
6 2 3 28 5741.2
7 3 6 35 6059.3
8 3 6 49 6591.4
8 3 5 39 8270.9
10 3 6 73 9769.8
15 5 10 64 14274
20 7 15 79 19860

Table 1: Numerical Results.
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