Solving Hankel Matrix Approximation
Problem using
Semidefinite Programming

Suliman Al-Homidan*

February 19, 2006

Abstract

Positive semidefinite Hankel matrices arise in many important ap-
plications. Some of their properties may be lost due to rounding or
truncation errors incurred during evaluation. The problem is to find
the nearest matrix to a given matrix retrieving these properties. The
problem is converted into a semidefinite programming problem as well
as a problem comprising a semidefined program and second-order cone
problem. The duality and optimality conditions are obtained and the
primal-dual algorithm is outlined. Explicit expressions for a diagonal
preconditioned and crossover criteria have been presented. Computa-
tional results are presented. A possibility for further improvement is
indicated.

Key words : Primal-dual interior point method; Hankel matrix; semidefinite
programming.
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Introduction

In view of its beautiful theory having significant applications, finite and in-
finite Hankel matrices have attracted attention of researchers working in
different disciplines, see for example Peller [21] and Chen et al. [8]. The
related concept of structural matrix approximation problem having applica-
tions to image processing has been studied by Fuhrmann [13] and Morgera
[18]. Park et al. [20] have presented a method for structure preserving
low-rank approximation of matrix which is based on structured Total Least
Norm (STLN). They have observed that a classical problem with a new
STLN-based algorithm can have a significant impact on the model reduction
problem with Hankel matrices. It may be noted that such a problem arises
in many branches of engineering such as speech encoding, filter design and
higher-order state-space models of dynamic systems.

Motivated by [1, 2, 3, 17], we have studied, as an extension of the work
by [4], approximation of an arbitrary matrix by positive semidefinite Hankel
matrices. Macinnes [17] has used a full rank of a particular Hankel matrix
while Al-Homidan [1, 2] has used a low-rank Hankel matrix based on the
projection algorithm and the Newton method. The projection algorithm
provides global convergence with slow convergence rate. This method has
been combined with the Newton method to yield the best features of both
approaches.



Anjos et al. [5] have studied a semidefinite programming approach for
the nearest correlation matrix problem. It may be recalled that the nearest
correlation matrix problem is to find a positive definite matrix with unit
diagonal that is nearest in the Frobenius norm to a given symmetric matrix.
This problem has been formulated as an optimization problem with quadratic
objective function and semidefinite programming constraints by Anjos et al.
and they have developed several algorithms to solve this problem. In the
present paper we have studied a related problem to the nearest corellation
matrix problem where the positive semidefinite matrix with unit diagonal is
replaced by a positive semidefinite Hankel matrix. More precisely, we have
discussed the solution of the following problem:

Given an arbitrary data matrix A € IR™ ", find the nearest positive
semidefinite Hankel matrix H to A, i. e.,

1
minimize ¢:§||H — A|%
subject to H € PNO, (0.1)

where P is the set of all n x n symmetric positive semidefinite matrices
P={H: H>»0, He 8"}, O is the set of all Hankel matrices, and S" is
the set of all symmetric matrices. Here, || Al = Y77, A, is the Frobenius
norm squared.

Section 1 is devoted to the basic results needed in subsequent sections
while the projection method for solving (0.1) is given in Section 2. In
Section 3, we formulate the problem first as a semidefined programming
problem (SDP), then as a mixed SDP and second-order cone problem
(SOC). The duality and optimality conditions for quadratic programs are
presented in Section 4. The primal-dual algorithm is outlined in Section
5 including explicit expressions for diagonal preconditioner and crossover
criteria. Computational results are presented in Section 6 and concluding
remarks are given in Section 7.

1 Notation

Define M™ to be the space of n x n matrices, then for a general rectan-
gular matrix M = [my my ... my,] € M", v = vec (M) forms a vector



from columns of M. The inverse mapping, vec ~!

, and the adjoint map-
ping, vec*, are given by Mat = vec ™! = vec*, the adjoint formula fol-
lowing from (vec (M),u) = (M,vec*(u)). We use the trace inner product
(M, N) = trace MT N, which induces the Frobenius norm. With this inner
product, Mat (and vec ) is an isometry. MT denotes the Moore-Penrose gen-
eralized inverse, e.g. [7]. Define e the vector of ones and ey the zero vector
with one in the k-position. Define Po(W) to be the orthogonal projection
of W onto the subspace of Hankel matrices O. We also need the operator

H:R" ' — O
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Also, define the isometry operator hvec : R**™' — O — IR*""! as
hvec (H(z)) = hvec (z) = [21 V283 - - VNXp - - V2899 Ton1]T  (1.2)

for any # € IR*™'. hvec is a linear operator satisfying the following: For
any z,y € R*"!

H(x) @ H(y) = hvec (z) hvec (y), (1.3)
|H (x) — H(y)||% = (hvec (x) — hvec (y))T (hvec (x) — hvec (y)). (1.4)

Here U o U = trace(UU) = 7', UZ;. Let hMat = hvec ™ ! denote the inverse

mapping into S, i.e., the one-one mapping between IR**™' and . The
adjoint operator hMat* = hvec, since

(hMat (v), H(s)) = trace hMat (v)H(s)
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= (hvec (H(s)),v) = (hMat " (H(s)), v) .



2 The Projection Method

The method of successive cyclic projections onto closed subspaces C;’s was
first proposed by von Neumann [24] and independently by Wiener [25]. They
showed that if, for example, C; and C5 are subspaces and D is a given point,
then the nearest point to D in C; N Cy could be obtained by:

Algorithm 2.1 Alternating Projection Algorithm
Let X1 =D
Fork=1,2,3,...
Xk:-l—l - Pl(PQ(Xk))

Then X}, converges to the nearest point D in C;NCy, where P; and P, are the
orthogonal projections on C and Cy, respectively. Dykstra [11] modified von
Neumann’s algorithm to handle the situation when C and C) are replaced by
convex sets. Other proofs and connections to duality along with applications
were given in Han [15]. The modified Neumann’s algorithm when applied to
(0.1) for a given data matrix A:

Algorithm 2.2 Modified Alternating Projection Algorithm
Let Ay = A
Forj=1,2,3,...
Aji1 = Aj + [Pp(Po(4;)) — Po(4;)].

Then {Po(A;)} and {Pp(Po(A;))} converge in Frobenius norm to the solu-
tion. Here, Pp(A) is the projection of A onto the convex cone P. It is simply
setting the negative eigenvalues of the spectral decomposition of A to zero.

3 Mixed-Cone Formulation

In this section we introduce briefly a direct approach for solving (0.1) which
is obtained by formulating it first as an SDP problem then as a mixed SDP
and second-order cone problem, more details given in [4].

To take the advantage of the isometry operator hvec, we need A to be
Hankel. If we project A onto O, we get Po(A). The following lemma shows
that the nearest symmetric Hankel positive semidefinite matrix to A is ex-

actly equal to the nearest symmetric Hankel positive semidefinite matrix to
Po(A).



Lemma 3.1 Let H(x) be the nearest symmetric Hankel positive semidefinite
matriz to Po(A), then H(x) is so for A.

Proof. If Pp(A) is positive semidefinite, then we are done. If not, then
for any H(x) € O, we have

(H(z) — Po(A)) e (Po(A) — A) =0
since Ppo(A) is the orthogonal projection of A. Thus,
[#(z) — Al = |H(z) — Po(A)|[7 +[[Po(4) — A%

This complete the proof since the second part of the above equation is con-
stant. |

In view of Lemma 3.1, (0.1) is equivalent to the problem
= minimize —||H( ) Po(A)|I7
subject to ?—[( ) = 0. (3.1)

Now, we have the following equivalences (for a > 0 € R):

[H(2) = Po(A)|F < a
& (hvec (x) — hvec (a))T (hvec () —hvec( ) <« by (1.4)

& a— (hvec (z) — hvec (a))" I(hvec (z) — hvec (a)) >

o I (hvec (x) — hvec (a))
(hvec (z) — hvec (a))” «
by Schur Complement (3.2)
where H(a) = Po(A). Hence we have the following SDP problem:
minimize !
H(z) 0 0
st 0 I hvec (z) — hvec (a) | = 0. (3.3)
0  (hvec (x) — hvec (a))” a

This SDP problem has dimensions 2n and 3n. The original problem (0.1)
can also be formulated as a mixed SDP and second-order (or Lorentz) cone



problem as follows: Since ||H(z) — Po(A)||% = ||hvec (x) — hvec (a)||3 we have
the following equivalent problem:

minimize e
subject to H(z) = 0

(h"ec () g hvec (a)) Zq 0. (3.4)

The dimension of SOC is 2n. The constraint > is the second-order cone
constraint.

Several public domain software packages can solve (3.3)
and (3.4). Many of them can be accessed via NEOS [12] at
http://www-neos.mcs.anl.gov/ (see also C. Helmberg’s SDP page
at http://www.zib.de/helmberg/semidef.html). The main work per
iteration for solving this problem is to form and solve the usually normal
equations for the Newton search direction. There are many complications
when forming and solving this system, since it is usually ill-conditioned at
the solution.

4 Duality and Optimality Conditions

Recall the primal SDP given (3.3), an equivalent problem to (3.1) and hence
to (0.1) is:

1
ut= min§||hvec (z) — hvec (a)||? subject to H(x) =0, z€ R™ ' (4.1)

To obtain optimality conditions, we use a dual problem. Slater’s condition
(strict feasibility) holds for (4.1). This implies that we have strong duality
with the Lagrangian dual

* ok : 1 - 2
pr=v —;n(sz)iécom;n2||hvec (x) — hvec (a)|]; — trace H(s)H(z).  (4.2)

Let o denotes the Hadamard product, b = [1,2,---,n,n —1,---,1]7, and

f = 3||hvec (z) — hvec (a)][3, then

Ayf = (z—a)ob. (4.3)



Similarly
A, (trace H(s) H(z)) = A, (hvec (s)Thvec (z)) = s 0 b. (4.4)

Now, we change (4.2) to the Wolfe dual by noting that the inner problem is
a convex unconstrained problem. Using (4.3) and (4.4) the optimal solution
for (4.2) is characterized by stationarity:

s=x—a. (4.5)

The equation in the Lagrangian dual can be expressed as

%Hhvec ()  hvec (a)|[2 — hvec (s)"hvec (z) = %bT((x —a)—zos). (46)

Thus we obtain the equivalent dual problem:

p* = maximize b"((z —a)>—xzo0s)
subject to s=z—a (4.7)
H(s) = 0.

Slater’s condition is satisfied for both primal and dual programs. Therefore,
we get the following optimality conditions.

Theorem 4.1 The optimal values p* = v* and the primal-dual pair x,s are

optimal for (4.1) and (4.7) if and only if

H(z) = 0 (primal feasibility)
r = a+s, H(s) =0 (dual feasibility)
H(z)H(s) = 0 (complementary slackness)

For our primal-dual interior-point algorithm, we use
H(z)H(s) = pl perturbed complementary slackness.

We can substitute the primal and dual feasibility equations into the perturbed
complementary slackness equation and obtain a single bilinear equation in s
that characterizes optimality for the perturbed log-barrier problem:

F,(s): R ! — IR":),

(4.8)
u(s): = vec[{H(s) +H(a)}H(s)] — pvecI = 0.



Note that the original problem has 2n — 1 variables and the semidefiniteness
constraint on H(z). Therefore, the dual problem has 2n—1 variables. Hence,
dual based algorithms do not reduce the size of the problem and standard
primal-dual based algorithms have 4n — 2 variables.

We solve (4.8) using an inexact Gauss-Newton method. Linearizing, we
obtain a linear system for the search direction As:

Fus+2s) = Fuls)+ Fi(As) + o([|As])
= F,(s)+vec{(H(s) + H(a))hMat (As) + hMat (As)H(s)}
+ o] As]).
(4.9)
Therefore,

F,(As) = vec{(H(s)+ H(a))hMat (As) + hMat (As)H(s)}

— vec (A+8) (As). (4.10)

This is a linear, full rank, overdetermined system. We use its least squares
solution as the search direction As in our algorithm. This solution is found
using preconditioned conjugate-gradient (PCG) with diagonal precondition-
ers. Note that As € IR* !, but the cost of evaluating (A + S) (As) is equiv-
alent to one matrix-matrix multiplication. The adjoint (F},)* for w € R"
is

(Fli)*(w) = hvec { Po{Mat (w)T[’H(S) + H(a)] + H(s)Mat (w)T}} (4.11)

5 The Algorithm

Using equation (4.8) to develop a primal-dual interior-exterior-point algo-
rithm, i.e., we linearize to find the search direction (assuming that we start
from a feasible point) using a linear least squares problem. First, we include
expression for a diagonal preconditioner, then we explain crossover criteria.

5.1 Diagonal Preconditioning

Preconditioning is essential for efficient solution of the least squares problem
(4.10). We find operators P and find the least squares solution of

(A+8) P (As) = —F,(s),
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where

As = P(As).

The inverses are not found explicitly. The operator P has a simple structure
so that the linear systems can be solved efficiently.

Optimal diagonal scaling has been studied in, e.g., [14, Sect. 10.5],
and [10, Prop. 2.1(v)]. In the latter reference, it was shown that for a
full rank matrix A € IR™*", m > n, and using the condition number
w(K) = n~'trace (K)/ det(K)'/", the optimal scaling, i.e., the solution of
the optimization problem

ml%n w((AD)"(AD)) subject to D a positive diagonal matrix,  (5.1)

is given by d;; = 1/]|All2,i =1,...,n.
Therefore, the operator P is diagonal and is evaluated using the columns
of the operator
Fu() = A() +S0).
The columns are ordered using £ = 1,2,...,2n — 1 corresponding to the
elements of s.
For the operators in F’, we get

Aler) = (H(s) + H(a))hMat (ez)

S(ex) = hMat (ex)H(s).
Therefore

P = (A+8)(en) |2 = 1

=5 (H(s)+H(a))hMat (ex) +hMat (ex)H(s)||5. (5.2)

The diagonal preconditioners are inexpensive to calculate. However, in
general, they are not strong enough [14].

5.2 Crossover Criteria

The Gauss-Newton approach has many advantages including full rank of
the Jacobian at each iteration and optimality and a zero residual. Therefore,
there is a local neighbourhood of quadratic convergence around each point on
the central path and this neighbourhood is not restricted to H(s), H(z) > 0.
In the neighbourhood of ;1 = 0, we can set the centering parameter 0 = 0 in
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the algorithm and use step lengths of one without backtracking to maintain
positive definiteness. Standard convergence results, e.g. [9, 16], show that
the Gauss-Newton method applied to F(s) = 0 is locally g-quadratically
convergent, since the Jacobian at the optimum is full column rank (one to
one operator). We follow [26] to discuss several constants used to determine
the region of quadratic convergence. Since we have a zero residual, then the
corresponding constant o = (. Since

|F'(As)||r ||H (z)hMat (As) + hMat (As)H(s)||r

|H(x)hMat (As)||z + ||hMat (As)H(s)||r
|H(z)||r[[hMat (As)||» + [[hMat (As)|[#[|H(s)||r
[As[l2([[H(z)llr + I1H(s)]r)

[As]l2/[[bvec (2)[[3 + [[hvec (s)[3

(by Cauchy — Schwartz inequality),

(5.3)

IA T INIA

the bound on the norm of the Jacobian is o = \/|[hvec (z)[2 + [hvec (s)|]2
1F'(s = 5)(As)llr = [[(H(z) — H(z))hMat (As) +hMat (As)(H(s) — H(5))| r
< [|As]ly(|[hvec (z) — hvec (2)]]2 + [[hvec (s) — hvec (s)]|2).

(5.4)
Therefore the Lipschitz constant is v = 1.
Now suppose that the optimum s* is unique and the smallest singular
value satisfies o (F'(s)) > VK, for all s in an ¢ neighbourhood of s*, for
some constant K > 0. Following [9, Page 223|, we define

K }
lvee @718 + Tvee (3)°

Then g-quadratic convergence is guaranteed once the current iterate is in
this € neighbourhood of the optimum. One possible heuristic for this is to
start the crossover if

: K :
€ = min{eg; 04_7} = min{e;;

pomin(F'(s)) > IIAfsll\/llhveC (@)[3 + [[hvec(s)[l5,  p€(0,1).  (5.5)

Note that this bound is overly restrictive since it does not take into account

the direction of the step. In our tests we started the crossover when the
relative duality gap _hvec (z)Thvec (s)
M) — AlZ+1

to converge, and q- quadratlc convergence was observed.

< 0.5. This simpler heuristic never failed
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5.3 Framework

Equation (4.8) and the linearization (4.9) is used to develop the primal-dual
interior-point Algorithm 5.1. We let F° denote the set of strictly feasible
primal-dual points; F’ denotes the derivative of the function of optimality
conditions.

Algorithm 5.1 (Primal-Dual Gauss-Newton via PCG)
Input:  Objective: data matriz A € S™

Tolerances: 61 (gap), o (crossover)
Initialization:

H(s%), H(2°) = H(s") + Po(4) = 0

1
gap = trace H(s")H(2°); pu=gap/n; o =1; objval = §||?-[(x)—1f’o(14)||fm

while min{ ;2% objval } > ¢,

if min{;E0-7, objval} <4, then
oc=20
else
update o
end if
Find LSS of F,(s) (As) = —Fy,(s) (using LSQR)
update H(s) = H(s) + « hMat (As),a > 0, H(z) = H(s) + Po(A),
(H(s),H(x) > 0)
gap = trace H(s)H(z); p=gap/n;
objval = L[H(x) — Po(A)[}
endwhile

At each iteration, the iterate s is available and we find a new iterate by
taking a step in the (inexact) Gauss-Newton search direction As. The search
direction is found using a conjugate gradient method, LSQR [19]. The cost
of each CG iteration is a matrix multiplication, see e.g. (4.10). Until the
crossover, we ensure that the new iterate s+ aAs results in both H(x), H(s)
sufficiently positive definite; then, we take o = 1 after the crossover. By our
construction, the iterates maintain both primal and dual feasibility.

There are many advantages of this algorithm: Primal and dual feasibility
is exact during each iteration. There is no (costly, dense) Schur complement
system to form. There is no need to find H(s)~!. By the robustness of the
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algorithm, there is no need to enforce positivity of H(s), H(x) once p gets
small enough; g-quadratic convergence is obtained. The entire work of the
algorithm lies in finding the search direction at each iteration by solving a
least squares problem using a CG type algorithm. Each iteration of the CG
algorithm involves a matrix-matrix multiplication. The more eficiently we
can solve these least squares problems, the faster our algorithm will be.

6 Computational Results

We solve a set of problems using five approaches: (i) Algorithm 5.1, (ii)
Algorithm 5.1 with preconditioning, (iii) the mixed-cone SDP formulation
(3.4), (iv) the SDP formulation (3.3), and (v) Algorithm 2.2. The SDPT3-
3.0 code [22, 23] was used for approaches (iii) and (iv). The tests were done
using MATLAB 6.5 on a Pentium IV PC with 512MB of RAM.

We solved problems with dimensions n = 10,...,500. The results were
obtained by applying the methods as follows: A positive definite Hankel
matrix A was formed randomly, then the matrix obtained was perturbed by
adding random noise matrix S to A, where elements of S vary between —0.50
and 0.50. The problem is to recover the matrix before the noise was added.
In all cases, we found the optimum to high accuracy, at least ten decimals.
The results appear in Figures 6.1. We can see the correlation between the
cpu time and size of the matrix A. The number of iterations required by
Algorithm 5.1 remains essentially constant from 10 to 14 iterations for all
the test problems. In the small problems, the number of LSQR iterations
required by one iteration of Algorithm 5.1 ranges from 8 to 20 iterations.
Then, this number increases for the mid-size problems to ranges from 15 to 32
iterations. However, in the larger problems, the number of iterations ranges
from 25 to 44 iterations. Figure 6.2 shows the total number of iterations by
LSQR against the size of the matrix A.

The data matrix A is always dense. Even if some of the elements are zeros,
they will disappear when we project to the Hankel space O. However, if any of
anti-diagonals of A is all zeros, then these anti-diagonals can be eleminated
and the dimension of the problem will be reduced by the number of zero
anti-diagonals. In the absence of sparsity in the data matrix A, numerical
experiments have shown that the diagonal preconditioning, is less efficient
and extra time is needed in the calculation of the preconditioning with small
reduction in the Gauss-Newton iterations and CPU time see Figures 6.1 and
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Figure 6.1: Comparing all five approaches

6.2.

As is typical with interior-point methods, the number of iterations of
Algorithm 5.1 and SDPT3 are reasonably constant. However, each iteration
of Algorithm 5.1 or SDPT3 involves solving a system of linear equations
using LSQR. The number of iterations by LSQR depends on the size of
the problem. The number of SDPT3 iterations are 14-20, and the number of
Algorithm 5.1 iterations are 10-14 while the total number of LSQR iterations
vary between 100 when n = 10 and 750 when n = 500 (see Figure 7.2).

After the crossover, to get q-quadratic convergence, centering o is set to 0
and steplength « is set to 1. This allows for warm starts. Long steps can be
taken beyond the positivity boundary. This improves the convergence rates
in all the numerical tests; the crossover starts in most tests at the 10 — 11th
iteration and converges in 2 — 4 iterations.
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Figure 6.2: Comparing the number of iterations by LSQR against the size of
the matrix A.

7 Conclusion

We have presented a p-d-i-e-p algorithm for finding the closest symmetric
positive semidefinite Hankel matrix to the data matrix. The numerical tests
show promising results. The approach is based on the strong robust primal-
dual path-following interior-point framework without using the symmetriza-
tion step or the Schur complement system. The method uses basic tools that
are successful for solving an overdetermined system of nonlinear equations
with zero residual, i.e. PCG applied to the GN method. The total cost of
an iteration lies in the solution of a linear least squares problem. This least
squares problem is solved using the (preconditioned) conjugate gradient type
method of Paige and Saunders [19]. The cost of each CG iteration is a matrix
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multiplication (essentially H(x)hMat (As)). We have shown how to derive
diagonal preconditioning for this approach. However, the numerical tests
show that threre is a small reduction in CPU time and so we would like to
improve upon this methods to get better results. Different preconditioning
such as preconditioning based for example on incomplete factorization might
be more efficient [6].
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