Alternating Projection Algorithm for Toeplitz Matrix Approximation

Suliman Al-Homidan

Department of Mathematical Sciences, King Fahd University of Petroleum and Minerals, Dhahran 31261, PO Box 119, Saudi Arabia

Abstract

Alternating projection onto convex sets is powerful tool for signal and image restoration. The extensions of von Neumann's [3] alternating projection method by Dykstra and Han [1, 2] permit the computation of proximity projection onto certain convex sets. This paper exploits this fact in constructing a globally convergent method for computing the closest positive definite symmetric Toeplitz matrix to a specified matrix. Some applications to signal processing and control problems are discussed. Comparative numerical results are also reported.

Key words : Alternating projections, least distance functions, non-smooth optimization, positive semi-definite matrix, Toeplitz matrix. AMS (MOS) subject classifications 65F99, 99C25, 65F30

References

- Dykstra, R. L. [1983]. An algorithm for restricted least squares regression, J. Amer. Stat. Assoc. 78, pp. 839–842.
- [2] Han, S. P. A successive projection method, Math. Programming, 40, pp. 1–14.
- [3] Von Neumann J. Functional Operators II, The geometry of orthogonal spaces, Annals of Math. Studies No. 22, Princeton Univ. Press. 1950.
- [4] Fletcher R., Numerical experiments with an exact l₁ penalty function method, Nonlinear Programming 4, (Eds. O. L. Mangasarian, R. R. Meyer and S. M. Robinson), Academic Press, New York, 1981.
- [5] Fletcher R., Semi-definite matrix constraints in optimization, SIAM J. Control and Optimization, V. 23, pp. 493-513, 1985.
- [6] Fletcher R., *Practical methods of Optimization*, John Wiley and Sons, Chichester, 1987.