Q1.Use the definition of derivative to find f'(x) where $f(x) = \sqrt[2]{x+1}$

Q2. Find all equations of the tangent lines to the curve $xy^2 + x^2y = 2$ at x = 1

Q3. A spherical snowball is melting at the rate of $4p \ cm^3$ / sec. How fast is the radius changing when it is $5 \ cm$. $(10 \text{pts}) \ V = (4/3)pr^3$

Q4. Use an appropriate local linear approximation to estimate the value of cos 31°

Q5. Determine other the function is 1-1 or not

a)
$$f(x) = x^2 + 8x + 1$$

b)
$$f(x) = 2x^3 + e^x$$

Q6. Find a formula for
$$f^{-1}(x)$$
 if $f(x) = \begin{cases} 5/2 - x & x < 2 \\ 1/x & x \ge 2 \end{cases}$

Q7. Find
$$\frac{dy}{dx}$$
 if $2y^3t + t^3y = 1$ and $\frac{dt}{dx} = \frac{1}{\cos t}$

Q8. Given
$$f(x) = x^8 - 2x + 3$$
, find $\lim_{z \to 1} \frac{f'(z) - f'(1)}{z - 1}$

Q9. Use the table to find

х	f(x)	f'(x)	g(x)	g'(x)
0	2	-2	3	1
1	0	4	1	0
2	5	-1	1	3

a)
$$h'(2)$$
 if $h(x) = f(g(x))$

b)
$$F'(0)$$
 if $F(x) = \frac{f(x)}{4 + g(x)}$

Q10. Find
$$\frac{dy}{dx}$$
 a) $\tan^3(xy^2 + y) = x$

Q11. Using differentials, approximate $\sqrt{25.02}$

Q12. Find the equation of the tangent line to $y = \frac{1-x}{1+x}$ at x = 2

Q13. Given $f(x) = 2x^5 + x^3 + 1$

- a) Show that f(x) is one-to-one
- b) Find $f^{-1}(4)$
- c) Find $(f^{-1})'(x)$