
Chapter 6

Numerical Simulation and Results

The performance of the algorithm is studied in a series of test cases. The

first set of examples is designed to verify analytical results. A second set of test cases

illustrates the performance of the method for heterogeneous media. Finally, a real

world problem is presented.

6.1 Computer code

To implement the algorithm the simulator Parssim 1 was modified. This

code was developed by the Center for Subsurface Modeling (CSM) of the Texas In-

stitute for Computational and Applied Mathematics (TICAM) at the University of

Texas at Austin [1]. Parssim1 models aquifer or reservoir incompressible single phase

fluid flow and reactive transport through a heterogeneous porous medium. Depen-

dence of the porosity on time was implemented along with porosity-dependent per-

meability. An outer flow-transport loop on each time step was also added to account

40
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Figure 6.1: Numerical Domain

for the tight and highly nonlinear coupling. Other modifications and additions to the

code were made to accommodate the given problem.

6.2 Domain

The numerical simulation of reaction infiltration instabilities is carried out in

a rectangular domain as shown in Figure 6.1 . The system is solved using the boundary

and initial conditions (3.7), (3.8), and (3.9). At the left side both the inlet flow velocity

vf and concentration cf are specified. No-flow conditions are imposed at the top and

bottom boundaries, while a pressure value pN is specified at the right (outflow) side.

The simulation is started with an initial bump in porosity and concentration. Behind
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∆t ‖φh − φ‖2 ‖Ch − c‖2

1 2.0785E-05 1.2362E-05

.5 0 5.7094E-06

.25 0 2.4771E-06

.125 0 8.7063E-07

Table 6.1: Rate of convergence with Vf = 10 cm/day

the bump the porosity and concentration are at their final values φf and cf , while

elsewhere they are at equilibrium values φo and ceq, respectively.

6.3 Rate of convergence

Since the exact solution of the problem is not known, to test the convergence

of the algorithm numerically we run the algorithm for different ∆t and take the result

of the smallest ∆t as the best approximation to the exact solution. The 2-norm of the

difference between this solution and the rest is computed and the results are given in

Tables 6.1 and 6.2 for different inlet velocity.

6.4 Verification of the analytical results

In this section we list some of the analytical results obtained in the previous

analysis of the problem in order to verify them numerically.
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∆t ‖φh − φ‖2 ‖Ch − c‖2

1 7.7942E-04 8.8489E-05

.5 4.3648E-04 4.0246E-05

.25 3.1177E-04 1.7093E-05

.125 7.2746E-05 5.6064E-06

Table 6.2: Rate of convergence with Vf = 100 cm/day

6.4.1 Front velocity

The velocity of a planar, traveling wave solution can be computed from (2.2)

and (2.4). Following the same techniques used in [12], we introduce a coordinate

system (ζ, t) moving with the front, ζ = x− V t, where V is the front velocity. Then

the equations for a planar front can be written as:

u′ = V φ′

−V (cφ)′ + (cu−Dc′)′ = −ρV φ′

Integrating from 0 to R and using the boundary conditions:

c→ 0, φ→ φf , u = vf as x→∞

c→ ceq, φ→ φ0, u = v0 as x→ −∞
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we get

v0 − vf = V (φ0 − φf) (6.1)

V (ceqφ0 + ρ(φf − φ0)) = ceqv0 (6.2)

then we can solve these equations for v0 and V and get:

v0 =
εφ0 + φf − φ0

εφf + φf − φ0

vf (6.3)

V =
ε

φf(1 + ε− φ0

φf
)
vf (6.4)

where ε = ceq/ρ. Since in general the solid molar density ρ greatly exceeds the solute

concentration, ε is a small parameter which implies that the reaction zone advances

with a slower speed than the fluid flow. The velocity of the front is approximated

from the graph of the numerical test output and we also get the values of the velocity

ahead of the front from the output data files. The comparison with the analytical

value is listed in Table 6.3, where the following values are used for the other parameter

φ0 = .25, φf = .3, c = .01, ρ = 1 which give the following analytical ratio:

V

vf
= 0.18867925,

v0

vf
= 0.99056604.
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vf V V
vf

v0
v0

vf

100 12.5 0.125 99.324 0.99324

80 9.375 0.1172 79.00 0.993028

70 8.6 0.1228 69.55 0.99357

50 6.25 0.125 49.655 0.993096

35 4.3 0.1228 34.7199 0.99199714

Table 6.3: front velocity

6.4.2 Reaction zone thickness

The thickness of the reaction zone can also be estimated [13] to be

Lr =
V

kceq
.

With the typical values of the parameters vf , φ0, φf , ceq, and k the reaction zone is

quite narrow. For example, with the values used in the numerical simulation Lr ≈ 10

cm while the length of the domain is greater than 104 cm. Thus in order to verify

this a very fine mesh has to be used which will make the computation too costly.

Therefore, using only the graphs of the output, we verify this by seeing that the

thickness is between 1 to 3 cells of the used mesh.
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6.5 Test cases

In previous work [12] it was shown that when the Peclet number exceeds a

critical number the reaction zone loses stability. Peclet number is defined to be

Pe =
vfL

D
,

where D is the diffusion coefficient and L is the width of the channel (L = LY ). Both

L and D are fixed in the numerical tests while vf is used as the control parameter.

In all of the test cases the value of the reaction rate constant, k, is set to 1, unless a

different value is mentioned.

In the following three examples we show the three different shapes the reaction zone

can attain. The values of vf in the three cases are 10, 100, and1 cm/day respectively.

In the examples shown in Figures 6.2 and 6.3 the following values are used:

φ0 = .25, φf = .3, ceq = .01, D = 10cm2/day

while in the example shown in Figure 6.4 the values of the initial porosity is changed

to φ0 = .28 in order to increase the nonlinearity and ensure that fingering occurs

within the specified domain. A stable case is shown in Figure 6.2. A case where the

reaction zone returns to a planar shape is shown in Figure 6.3. An unstable case is

shown in Figure 6.4. Note that in this case, as mentioned in Chapter 1, the flow is

focused at the tip of the bump as it can be seen in the velocity vector plot of Figure

6.4.
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Figure 6.2: Solution contours in the stable case; vf = 10 cm/day
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Figure 6.3: Solution contours in the planar case; vf = 1 cm/day
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Figure 6.4: Solution contours in the unstable case; vf = 100 cm/day
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6.6 Dispersion effect

Since Peclet number depends on molecular diffusion, it is not clear from the

analysis in [12] if hydrodynamic dispersion will affect the shape stability of the reactive

flow. Therefore, in [13] the effect of hydrodynamic dispersion was examined. It was

showen there that even if velocity-dependent dispersion is included in the model, the

Reaction-Infiltration Instability persists. The transverse dispersion has a stabilizing

effect without entirely eliminating the Reaction-Infiltration Instability [13]. We show

this numerically in Figures 6.5 and 6.6. We notice that when aT is set to 100cm the

instability is reduced.
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Figure 6.5: Solution contours for the porosity with vf = 100cm/day and D =

10cm2/day
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Figure 6.6: Solution contours for the porosity with vf = 10cm/day and D =

10cm2/day
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6.7 Non homogeneous porous media

We will consider two types of non homogeneous media, a layered porous

media and a random heterogeneous porous media

6.7.1 Layered porous media

Understanding the shape stability of a reactive front in a layered porous

medium is very important from the viewpoint of application because many porous

media were naturally formed in a layered pattern. Using a complete linearized stabil-

ity analysis, the shape stability of the reaction interface for reactive flow in a layered

porous medium was studied in [16]. In that study, the layering of the porous medium

is assumed to be the same as the thickness of the front and they compared the results

with the case of homogeneous porous media.

As in [16] we will consider the two cases: layering only ahead of the front

and layering ahead and behind the front. In the first case the porosity is constant

behind the front, while in the second case a similar layered medium is left behind the

front with higher porosity. For both cases as the front passes a fixed proportion of

the medium dissolved out.

For the first case, layering only ahead of the front, we will use a number of

layers with φ0 alternating between 0.25 and 0.2 and set φf = 0.3. For the second case,

layering ahead and behind the front, φf will be set to be 0.3 and 0.24 respectively
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Figure 6.7: Layered porous medium

for the same pattern. To see the effect of the number of layers (or equivalently the

thickness of the layers), we run both cases into two different layered medium shown in

Figure 6.7. No initial bump is used in these simulations and we make no assumption

about the thickness of the layers.

The results for the first case are shown in Figures 6.8–6.15. We first note

that in the case with fewer layers the fingers developed are slightly longer than the

ones with more layering.
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Figure 6.8: Solution contours for the porosity in Layered Porous Media ahead of the

front with Vf = 100 cm/day
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Figure 6.9: Solution contours for the concentration in Layered Porous Media ahead

of the front with Vf = 100 cm/day
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Figure 6.10: Solution contours for the porosity in Layered Porous Media with Vf = 10

cm/day
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Figure 6.11: Solution contours for the concentration in Layered Porous Media with

Vf = 10 cm/day
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Figure 6.12: Solution contours for the porosity in Layered Porous Media with Vf =

100 cm/day with fewer layers



60

0 5000 10000 15000 200000

5000

10000

Mineral
0.008
0.006
0.004
0.002

0 5000 10000 15000 200000

5000

10000

Mineral
0.008
0.006
0.004
0.002

0 5000 10000 15000 200000

5000

10000

Mineral
0.008
0.006
0.004
0.002

0 5000 10000 15000 200000

5000

10000

Mineral
0.008
0.006
0.004
0.002

Figure 6.13: Solution contours for the concentration in Layered Porous Media with

Vf = 100 cm/day with fewer layers
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Figure 6.14: Solution contours for the porosity in Layered Porous Media with Vf = 10

cm/day with fewer layers
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Figure 6.15: Solution contours for the concentration in Layered Porous Media with

Vf = 10 cm/day with fewer layers
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Figure 6.16: Solution contours for the porosity in Layered Porous Media with Vf =

100 cm/day

Figures 6.16–6.23 show the results for the second case. We note here that

layering ahead and behind the front stabilizes the front.
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Figure 6.17: Solution contours for the concentration in Layered Porous Media with

Vf = 100 cm/day
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Figure 6.18: Solution contours for the porosity in Layered Porous Media with Vf = 10

cm/day
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Figure 6.19: Solution contours for the concentration in Layered Porous Media with

Vf = 10 cm/day
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Figure 6.20: Solution contours for the porosity in Layered Porous Media with Vf =

100 cm/day and fewer layers
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Figure 6.21: Solution contours for the concentration in Layered Porous Media with

Vf = 100 cm/day and fewer layers
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Figure 6.22: Solution contours for the porosity in Layered Porous Media with Vf = 10

cm/day and fewer layers
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Figure 6.23: Solution contours for the concentration in Layered Porous Media with

Vf = 10 cm/day and fewer layers



71

0 5000 10000 15000 200000

5000

10000

0 5000 10000 15000 200000

5000

10000

0 5000 10000 15000 200000

5000

10000

0 5000 10000 15000 200000

5000

10000

Figure 6.24: Solution contours for the porosity in a Heterogeneous Porous Media with

vf = 100 cm/day

6.7.2 Heterogeneous porous media

Medium heterogeneity is an important factor that affect the flow of multi-

phase fluid mixtures and the dispersion or dilution of aqueous chemical plumes in

aquifers and petroleum reservoirs [36].

We first run the code for a case where the initial porosity is φ0 = .25 except

at some random points where the porosity is equal to its final value 0.3. Figures 6.24

and 6.25 show the porosity contours. We notice that the shape of the front for the

concentration is similar to porosity as shown in Figures 6.26 and 6.27.



72

0 5000 10000 15000 200000

5000

10000

0 5000 10000 15000 200000

5000

10000

0 5000 10000 15000 200000

5000

10000

0 5000 10000 15000 200000

5000

10000

Figure 6.25: Solution contours for the porosity in a Heterogeneous Porous Media with

vf = 10 cm/day
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Figure 6.26: Solution contours for the concentration in a Heterogeneous Porous Media

with vf = 100 cm/day
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Figure 6.27: Solution contours for the concentration in a Heterogeneous Porous Media

with vf = 10 cm/day

Next, we run the code for a random porosity field. The initial heterogeneous

porous medium is constructed by randomly assigning the porosity at each cell. The

porosity has values between .1 and .5. The results are shown in Figure 6.28. Initially

the concentration is assumed to be constant all over the domain with value equal to

.01. The last graph of Figure 6.28 shows the fluid streamlines. We note in this case,

as in the layered media case, that the concentration front has the same shape as the

porosity front, as can be seen in Figure 6.29.
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Figure 6.28: Solution contours for the porosity in a random Heterogeneous Porous

Media with vf = 100 cm/day
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Figure 6.29: Solution contours for the concentration in a random Heterogeneous

Porous Media with vf = 100 cm/day
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6.8 Real world problem

To apply the algorithm to a real world example, the problem explained by

Zhu, Hu, and Burden in [39] and [40] is used. In these studies an abandoned uranium

mill tailings site (the Bear Creek Uranium site) in Wyoming, USA was used to simu-

late natural attenuation of a contaminated aquifer. The aquifer is contaminated with

sulfuric acid which was used to dissolve and oxidize uranium. The spent acids were

piped to unlined tailings ponds. To reclaim the site, a low-permeability cover is to be

installed on the tailings ponds to prevent further infiltration from precipitation. It is

predicted that 5 years after the cover installation that tailings pore water will cease

to drain into the underlying aquifer. After that time, the plume will be flushed by

uncontaminated upgradient groundwater [39]. In their study, a total of 11 aqueous

component, and six minerals were included in the simulations which was done using

PHREEQC Version 2.0, a one-dimensional finite-difference model.

We will numerically simulate a period of 400 years of flushing of the con-

taminated aquifer by uncontaminated upgradient ground water and predict the con-

centrations of sulfate (SO2−
4 ). This flushing will cause gypsum, Ca(SO4).2H2O, to

dissolve out and this lead to an increase in porosity. For the sake of testing, we will

only use a single component in the simulations. Table 6.4 summarizes the values used

for different parameters and Figure 6.30 shows the domain used. In [40] the speed of
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the gypsum-dissolution front was estimated using the following equation

v̄
Ca

2 − C
a
1

CT
2 − C

T
1

, (6.5)

where v̄ is the pore velocity, Ca is concentration in the aqueous phase, and CT is the

total concentration of the component in both the aqueous and solid phases. The sub-

scripts indicate the values upstream and downstream of the wavefront, respectively.

They used Ca2+ concentration for calculation and came up with the value 2.83 m/yr.

On that study, no porosity change was considered and local equilibrium was used in

the above calculations.

Using equation (6.4) and the values given in Table 6.4, our model estimates

the front velocity to be V = 1.732 m/yr, a close agreement.

Since the model used in [39] and [40] does not involve the reaction rate

constant, k, we need to determine what value to use for this constant. Many geo-

chemical studies were done to determine an accurate dissolution rates of gypsum (see

for example [24] and [33]). According to these studies, there are many factors that

control and affect the dissolution rates of gypsum including the chemical reaction at

the surface, molecular diffusion, ionic strength, crystallographic orientation [24], [33].

From in-situ experiments done by the authors of [33], gypsum dissolution rates fell in

the range of 0.1 × 10−5 (slow flow) to 2.0 × 10−5 mol cm−2 h−1 (fast flow). We can

note from equation (6.4) that the reaction rate constant, k, does not affect the speed

of the front [12]. Therefore, in our simulation k is set to 103yr−1. To represent the
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vf 50 m/yr aL 10 m

φ0 0.2874 and 0.3 aT 1 m

φf 0.3214 D 0

cf 8 mol/m3 ceq 16 mol/m3

ρ 13434.396 mol/m3

Table 6.4: values used in real world problem

relationship between permeability and porosity, the P.C. Lichtner [28] equation given

in Chapter 2 is used.

In Figure 6.31 the concentration contours are shown at 100 yr time interval,

while Figure 6.32 shows the porosity contours. We note that the speed of the front

in the numerical simulation is less than the theoretical value estimated above. From

the graph the speed is found to be 1.625 m/yr.

To check for instability, we rerun the above case with an artificial bump, as

done in the previous sections. The results are shown in Figure 6.33, and we note that

the front is stable where the bump does not grow.

As predicted by the mathematical model of the Reaction-Infiltration insta-

bility problem, these numerical results showed that the porosity change cause the

front to advance in a slower speed than the fluid flow. We note also that the front

velocity is affected by the choice of the equation representing the relationship between
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Figure 6.30: Numerical Domain for real world problem
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Figure 6.31: Solution contours for the concentration
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Figure 6.32: Solution contours for the porosity

porosity and permeability. Therefore, an accurate prediction of this relation may lead

to a more realistic simulation of the real world problems.
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Figure 6.33: Porosity contours at t = 0, 100, 200, 300, 400 years




