
Inverse Problems are one of the most
challenging problems in science.
Inverse Scattering Problems are used
to determine inside character of a body.
These arise in Radars, sonars,
geological exploration, medical imaging,
non destructive testing.
 A signal is introduced that travels
inside the body as waves. These waves
interact with the discontinuity /
inhomogeneity and gets scattered. From
knowledge of this scattered field
information about the inhomgeneity
(reflector) is sought.
The signal could be acoustic, elastic or
electromagnetic.
More often a direct problem is also
needed to arrive at an inversion process.
In direct problem material properties,
boundary conditions and source is known
and we determine the resulting wave
field.





Direct Problems: (Scattering) Main
methods of solution in this case are (
Jones; Rawlins; Meister; Wickam)
 Greens Function
Spectral Methods
Wiener-Hopf Method
Perturbation Method
Inverse Problems: ( Bleistein; Colton;
Kress; Cohen)
Problem is often reduced to a Fredholm
integral equation of first kind
Analytical Methods
Regularization Methods
Numerical Methods



Inverse Problem - An Introduction
Let us consider a wave propogating in an
infinite medium of known wave speed
cx,x  0 and a small change in wave
speed occurs for x  0. Our objective is
to determine the small change in the
speed. The observable quantity ux, -
called field is assumed to satisfy a
Helmotz field equation

d2u
dx2

 2
2
u  x

du
dx  i

x u  0 as |x|  

 being wave velocity.
Let

1
2x

 1
c2x

1  x

cx is background speed, x is small
variation.
The governing eqaution becomes

£u   x  1
c2x

x



Let us write
ux  u0x  vx

vx being scattered field x  0 and u0the
incident field
u0 satisfies

d2u
dx2

 2
2
u  x

du
dx  i

x u  0 as |x|  

This leads to

£u  2
c2x

xu0x  vx

The solution to this equation can be
written in terms of Green’s function
satisfying the homogenenous equation,
so

vx  2 


x
c2x

u0x  vxgx,,dx

This is nonlinear and illposed integral
eqaution in x.



Borns Approximation:

vx  2 


x
c2x

u0xgx,,dx

If the medium in which the problem is set

has boundaries then the field is
determined subject to the boundary
conditions. The problems in seismology,
ocean acoustics would require boundary
conditions at the free surface. In most
cases whole of the boundary is assumed
to satisfy either Dirichlet, Neumann or
Robin boundary conditions. The material
of the medium is also usually assumed to
be at rest. However for ocean acoustic
direct or inverse problems or problems
set in atmosphere the motion of tthe
medium may also be of interest. For this
purpose we shall assume the medium to
be moving with velocty and will assume
a two part boundary at ground or sea bed
each having a different impedane
constant.





Model:
We consider an acoustic medium
occupying half space with z-axiz to be
directed into the medium. The velocity of
the medium is taken to be U in the
direction parallel to x-axis.
1) The two part boundary is made up of
e.g. land, forest, sea.
2) Each part of ground has a different
constant impedance give by

Zx 
Z1, x  0
Z2, x  0

3) The background sound speed c0 is
assumed to be constant.
4) THe object or inhomogeneity in the
medium causes a small change in speed
given by

1
c2z

 1
c02

1  z

or 1
cz  1

c0 1  z
2





Boundary value Problem:The
perturbation velocity  of the irrotational
sound wave can be written in terms of
the velocity potential ux, z as  grad
ux, z. The resulting pressure of the
sound field is given by

p  0 
t  U 

x u,

where 0 is the density of the
undisturbed stream. We shall restrict our
consideration to the time harmonic
variation expit and consider the
configuration shown in Fig. 1. Then the
problem reduces to one of solving the
wave equation for moving fluid 8

1  M2 2
x2

 2
z2

 2iM
cz


x  2

c2z
u

 x  az  ,

subject to the boundary condition




z  0

Zx U

x  i 0

Zx ux, 0

 0.

Furthermore, the radiation condition for
z  , is also assumed. The radiation
condition ensures that when z   the
total field behaves like a wave outgoing
from the plane z  0.



1  M2 2
x2

 2
z2

 2iM
c0


x  2

c02
u0x

 x  az  ,

with the above mentioned radiation
condition for z   and the boundary
condition


z  0

Zx U

x  i 0

Zx u0x, 0

 0.

The field vx, z satisfies

1  M2 2
x2

 2
z2

 2iM
c0


x  2

c02
vx,

  2z
c02

 iMz
c0


x u0  vx, z,

and


z  0

Zx U

x  i 0

Zx vx, 0  0,



Direct and Inverse Scattering Integral
Equations
Let


v , z denote the Fourier transform

of vx, z with respect to x

v , z  




vx, zexpixdx,   ,

and the inverse transform yields

vx, z  1
2 




v , zexpixd.

Where  is a straight line in the regularity
strip of


v , z in the complex  plane. If


v , z has singularities on the real 
axes (as we shall see later that it has),
then  must pass above those
singularities that lie on the real axis .
Hence the narrow strip consists of the
indented line  .
Now let us take Fourier transform of the
BVP with respect to x together with the
convolution property of the Fourier
transform we get



d2

v

dz2
 02


v  2

c02
 M

c0 z

u,

and

v , 0  i

20 

z 


Z  


v , zdz0  0.

Where 0 denotes the following
function

0  1  M22  2M
c0   2

c02
,

00  i 
c0 .

If we set 0  0, then we find two
roots namely   

c01M
and

   
c01M

. Since the flow is subsonic
(|M|  1), the second root always lie on
negative real axes.
To solve these, we make use of Green’s
function


G z,,, satisfying the

following relations



d2

G

dz2
 02


G z  ,


G z,,  outgoing wave as z  ,


G 0,,


z 




Z   


G z,,d

z0
 0.

We follow the sam eprocedure as
followed by Idemen and Akduman to
arrive at the following operator equation

I  AD  f,,

where I is a unit operator while the linear
operator A and the known function f are
defined by

AD  i0exp0
20  U





Z   Dexp0d,

and



f,  1  i0exp0
20  U





Z   exp0d.

The functional equation is the direct
scattering equation and its solution
procedure will be considered in the next
section. Now, by assuming D and
hence


G is known, we can write solution


v , z as follows:


v , z   2

c02
 


0

h 
G z,,


u ,d, z  0,

or it can be written in the operator form

I  B

v B


u0 .

Where the operator B is defined by



B

u  2

c02
 M

c0


0

h 
G z,,


u ,d.

From above equation we get

v , z  I  B1B


u0 .

This is the inverse scattering equation
which connects the field with z
appearing in B. This is the integral
equation on which we base the inverse
scattering theory. The field u0 can be
calculated in the same way as the field v
as


u0 , z 


G z,,expia

 expia
20



exp0|z  |  Dexp0

z,  0.

5. Solution of the direct scattering
equation



The direct equation can be solved
exactly by function-theoretic methods.
The function Zx has Fourier transform
in the sense of distribution which can be
obtained by defining

Zx  Z1  Z2  Z1Hx
 Z1  Z2  Z1

0
lim expxHx.

Here, Hx stands for Heaviside
unit-step function defined by

Hx 
1, x  0
0, x  0.

The Fourier transform of expression is
given by


Z   2Z1  i Z2  Z1

  i0
.

Furthermore, the last term can also be
written as

1
  i0

 1
  i,



This yields

Z   Z1  Z2  i Z1  Z2

 .

Now WH equation with the help of above
takes the following form

AD  i0Z1  Z2
20  U

D  0Z1  Z2
20  U

CP 


Dexp0
   d ,

where CP stands for Cauchy principal
value. Consider the functions f and
f. The first is regular in the upper half
plane and goes to zero as   , while
the second has same properties in the
lower half plane.
We can write

1
i CP 



exp0D
   d  exp0D

 exp0D,   ,

and



exp0D 

exp0D  exp

exp0  exp0  exp0

Now the expression with the help of and
takes the following form

AD  i0exp0
0  U

Z1exp0D  Z2exp0

Similarly

f,  1  i0exp0
0  U

Z1exp0  Z2exp0

Furthermore, we also need

D  exp0 

exp0D  exp0D

From the application point of view, in
most cases the recorded data are



high-frequency data, so we seek only a
high-frequency solution to the direct and
inverse problem. Mathematically, the
high frequency approximation implies
use of asymptotic methods to create
high-frequency formulation of the forward
and inverse problems. Owing to the
high-frequency assumption, any result
that can be expressed as a series of
quantities multiplied by inverse powers of
 may be accurately approximated by
the leading-order term(s) of the series.
So by the use of binomial theorem we
can easily write

1
  U

 1
 1  U

 .

We get after some rearrangements the
following Wiener-Hopf problem



exp0

1  iZ20

1  iZ10

 
1  iZ1

1  iZ1


1  iZ20U

02

1  iZ10U
02

exp0,   .

The solution of this equation will be given
in the next section.
5. Solution of the Wiener-Hopf
problem
We use the Wiener-Hopf technique to
solve equation. Following three cases
must be treated separately:
1. The case Z1  Z2.



2. The case Z1  Z2 and Z1Z2  0.
3. The case Z1  0 and Z2  0.
Now we analyze these three cases
separately, and discuss the solution
procedure in detail in the following three
subsections.
5.1. The case Z1  Z2
In equation , if we set Z1  Z2  Z, then
we can easily get

D  
1  iZ0U

02

1  iZ0U
02

.

This is the reflection coefficient in terms
of impedance of the plane. Here we can
also consider the case where impedance
of the plane is zero, that is, the case
Z  0. In this case we can easily see that
, D  1, which is the known result of
the reflection coefficient of the perfectly
absorbing plane.
5.2. The case Z1  Z2 and Z1Z2  0
In this case set



K 
1  iZ20U

02

1  iZ10U
02

,

Following the standard solution
procedure Noble, the kernel has a
factorization of the form K  KK. To
perform such a factorization in a
straightforward manner let us define the
function

K1,Z  1  i02
Z0  U

,

which permits us to write the kernel as

K  Z2
Z1
K1,Z2
K1,Z1

.

The intermediate function K1,Z
defined above is continuous everywhere
on the line . It has weak singularities at
the points   

c01M
,    

c01M
and

   
U , and also K1,Z  1 as   

on the line . This shows that the factors
of K1, that is, K1 and K1 can be obtained



by the classical formulae

K1  exp 1
2i 



logK1
   d , Im  0

K1  K1, Im  0.

Also note that the function K1 is both
regular and different from zero in the
upper half plane. Furthermore, K1  1
an   . Similar properties hold for
K1 in the lower half plane. Now using
the intermediate function and its
factorization defined above, we can
rearrange as follows:

K1,Z1
K1,Z2

e

Z2
Z1
K1,Z2
K1,Z1

exp0D  f,,

where



f,  K1,Z1
K1,Z2

K1,Z1
K1,Z1

exp0  Z2
Z1
K1
K1

Now we can apply Liouville’s theorem
which yields the unique solution of this
expression as

exp0D  K1,Z2
K1,Z1

f,,

exp0D  Z1
Z2
K1,Z1
K1,Z2

f,.

Where f, are such that
f,  f,  f, with f,  0
and f,  0 when    in the upper
and lower half plane respectively.The
solution of the Wiener-Hopf problem can
be found as



D  exp0
K1,Z2
K1,Z1

f,  Z1
Z2
K1,Z1
K1,Z2

f,

It is worthwhile to note that all the terms
appearing on the right-hand side depend
on the parameter , while the left-hand
side is independent of this parameter.
This fact can be used to check the
accuracy of numerical computations.
5.3. The case Z1  0 and Z2  0
In this case the expression takes the
form

exp0D 
iZ20  U

02
K1,Z2exp0D

 exp0 
iZ20  U

02
K1,Z2exp0.

We can factorize the kernel as follows:



0  UK1,Z2 

  U   
c01  M

   
c01  M

K1

The solution can now be obtained by
repeating all the steps of the previous
case.
6. Solution of the inverse scattering
equation
Now we consider the inverse equation
and workout the details and conditions
under which the inverse problem can be
solved. First suppose that the Green’s
function


G z,, appearing in the

equation is completely known. Also since
the variation in wave speed z is small
(less than one), therefore |z|2  1. If
we restrict to the strip z  0,h, then the
restriction of the operator B defined in is
a bounded operator in L20,h,C . In
fact, by Schwarz inequality we can write



B

u

L20.h
 2

c02
 M

c0 
0

h 
0

h 
G z,,

2

or

BL20.h  2
c02

 M
c0 

0

h 
0

h 
G z,,

2
dd

From this we conclude that by
appropriately choosing the frequency ,
we can ensure the following inequality

BL20.h  1.

Now we can use this inequality to
expand the inverse operator in terms of
Neumann series


v , z  B  B2  B3  ...


u0 , z  0,h.

If the frequency is such that B  1,
then square and higher powers of B can
be neglected and so takes the form


v , z  B


u0 , z  0,h,   .

This is well-known Born’s approximation.



This approximation stays valid if the
following condition is met , namely

1 

min 1

2

c02
 M

c0


0

h 
0

h 
G z,,

2
dd

Now we set z  b in the equation . The
resulting equation involves  as unknown
function. Then the unknown function  is
the solution of the following integral
equation

T  02

v ,b,   ,

where the linear operator T is defined by

T  2
c02

 M
c0 02 

0

h 
G b,,


u0

If the integral appearing on the right side
is discretized by any one of the known
quadrature techniques , then an equation
involving some discrete values of the
wave speed variation at some discrete
points, say 1,2,3, ...,n, is obtained



02

v ,b  

j1

n

Tj j,   .

To determine the values of
1,2,3, ...,n, we can consider it at
certain points  i   i  1,2, ...,n, which
yields a system of linear algebraic
equations, namely

02 i

v  i,b  

j1

n

Tj i j, i  1,2,3, ...,n.

We can at least theoretically sove these
for  i.


