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Motivation

"An accuraté descriptioh of the velbcity profile

of the near surface earth is essential for the
definition and interpretation of the shallow geology.

@ Detection of the heterogeneity and lithology
of the near surface layer.

& Detection of the depth of the hetefogeneity;



Sui'face Wave Méthod

& Use the dispersion of Surface waves to
detect heterogeneity and variations in
velocity profile

Depth : Depth




Depth Detection by Surface Wave

@ Use the dispersion of Rayleigh surface waves
to infer the depth of the heterogeneity

Layer 1

Depth : Depth



Geometry of the Problem
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We start the mvestigation of the near surface earth by exciting a band-limited pomnt source located at

X; and at time ¢ = 0. The pomt source will generate a surface waveield (x;, w ), which will be

measured on the surface by a number of receivers located at posttions x..



The Governing Equation

The propagation of the wavefield iz governed by the Helimholtz equation:

— 2 w? _ : ~ _ o~
Lu(X;,w) = [V* + ra Ju(x;,0) = —F(w)é(x—X;) andz = 0,
where 7w ) represents the Fourier transform of the source and can be described as a continuous

function with a compact support, &(x — x; ) is the Dirac delta function, w is the angular
frequency, and £ is the shear velocity of the medium. Furthermore, the incident wavefield and all
the other scattered wavefields produced by the heterogeneity in the near surface earth satisfy the

Sommerteld radiation conditions. That is, #u: 1s bounded and:

2 - IE;’] -~ Qasr = o, r = |X]|.



Linearizing the Scattered Wavefield

The medium’s shear speed [ can be decomposed into a known background speed £y(x) and a perturbation 1)(x) which

represents the heterogeneity in the near surface earth as

Expanding the above equation as a power series, one obtains:

L - LA (en)+(en)* = (en) + ... |
il (en) + (en)* — (en) s

Neglecting (=% ) and higher orders, we arrive at the following;

— =[] - en(x)],

%[1+Er;] ﬁlil



Linearizing the Scattered Wavefield

By substituting last equation into the Helmholtz equation, we get the following equation:

[V2 + E—j]n(xﬁm) — Er;;’—ju(th) = —Fw)o(x — X;).
a 1]

Denoting [V* + ;—z] by Ly and .‘}‘”2 by L, we obtain:

72
i P

Lou(X;, @) — el u(X;,0) = —Fw)o(X — X;).



Linearizing the Scattered Wavefield

The perturbation procedure is then applied to the wavefield ::( x;. < ) by decomposing the
wavetield into an incident wavefield, (X, @ ) representing the response of the near surface earth
m the absence of the heterogeneity 1)(x) and i1 ,,( X;., @ ) represent the modulation of zig(x;, @) in
response to the presence of the heterogeneity 1;(x ) where /7 denotes the degree of scattering.

Then, the wavefield can be expressed mathematically as a perturbation series:

1 = g + €Uy + €21y + ...

By substituting and by collecting terms of equal powers of =, we obtain:

Lotg = —F(w)o(xX — X;)
.

-,

Lottty = Littm_1 m = 1




Linearizing the Scattered Wavefield

By introducing the adjoint operator and the adjoint Green function at the receiver location x, we get:

LoG*(X:, X, ) = 0(X; — X)

where L] represents the adjoint operator and &*(x;, X, w ) represents the adjoint Green function of the
direct operator Z; and of the direct Green function Z(x. x;, w ), respectively.

We state the Green theorem as:

[ {G*Louo — uoL§G*}dV = [ _{G*(nn +V)uo — uo(n *V)G*}dS.

where 7 is the domain of the problem, # is a unit vector directed outward and normal to the boundary

surface 270,



Linearizing the Scattered Wavefield

For the problem in hand, the adjoint operator is the same as the direct operator. Thus,

(X, X;,w) = &(x;,X, w). Consequently, the solution is given by:

1o = —GF(w)
]
sy = GLyty_1 m=1

And we obtain:

1= uy— £GLiug + €2GL1GLy1g + ...

where & represents the total wavefield consisting of the unperturbed field, the single scattered field, the

double scattered field and the higher orders of scattered fields and is known as the Neumann scattering series.



Linearizing the Scattered Wavefield

Retaining the first two terms, one obtains the Born approximation:

i =1y - GLyuy.

The single scattered wavetield i 1s gven by —GL 24 and it depends linearly on the perturbation of the medium. Therefore,

the process of linearizing the scattered wavefield s complete.



Linearizing the Scattered Wavefield

So far we have been confining ourselves to the scattered wavefield at x;, but our goal is to obtain an integral

equation for i (Xz,X;, ) :

Lou1 = —Liug = —E—jr;(x)G(}iS,x,w}.
1]

’[\Jlen the integral equation for the single scattered wavefield:

Hl(xgﬂ Xﬂjm) = _[

I u—gG(ijx ,0)F(o)n(x)G(X, Xz, w)dV.

The integral relates the observed single scattered wavefield i  (xz,X;., w ) to the heterogeneity 1(x). It also

represents the forward modeling equation for the scattered wavefield.



Thé Greeh Funct'ion - Method

Let us now address the Green function technique to find an inverse of a linear differential operator. Assume

that we want to find the solution of the following equation:
Lu=—f a<x<b, Bi(u) =0 & Ba(u) =0

Where L is a linear differentiable operator of order 7:.
The Green function of the above equation is given by:
Lg(x,x ) = —6(x—x ),

with the following properties:

Lg(x,xa) =0 forx # x

!
dFglxx )

- !
- contmuous atx =x fork=0,1.2,....n—2

# =1 the jump condition.

-1 ! :
£ glxx ) o=+
a1 x=x

The adjoint Green function g*(:::..xr )iz defined as:

L*g*(x.x) = —8(x —x). |




Thé Greeh Funct'ion-for 'Love Wave

The Love wave differential operator will be used to derive i three steps the Green function for the Love wave
in the half-space overlain by a layer.

First, we will obtain the Green function (z,z; ) for an infinite medium by using the Green function method.

L(G) =0, —w<z<350
L(G) =0; Z0 < 2 < 4w

.—'a_'.—' )

(G(z,z0) 1s continuous at = = =

(G(z,z0) statisfies the jump condition, d—G\z_ — d—G\EE =

: - _ 42 2 uz
withG = 0asz » tooand L = “= — (k” - 5



Thé Greeh Funct'i-on-for 'Love Wave

A(zo) exp(vpz), — 00 <z <2

G(z,z0) =

B(zo) exp(—vgz), 20 <2 <+

Applying the continuity condition at z = z;, we get:

Cexplvg(z —z0)]; — <z <2

G(z,z0) =

Cexplvg(zo —2)]; 0 <z <+w

The jump condition then gives —Cvs — Cvg = 1, thatis C = _ﬁ

Substituting for C to get:

G(z,z0) = — l exp|—vplz —z0l,

Evﬁ




Thé Greeh Funct'ion-for 'Love Wave

Second, we derive the Green function for a half-space by using the method of images. We will consider that

we have sources &5(z — zp ) at z = z; and a negative image sowrce —&(z —zp ) at z = —z, thus we have:

L-G(z—z0) — vEG(z —20) = 8(z —z0) —5(5 + z0).

Applying the principle of superposition, we get:

I

G(z,z0) = —ﬁ expl—vglz —zol|] + ﬁ expl—vg|z+zo

which represents the Green function for a half-space bounded by zero and infinity.

However, the half-space in our model is overlain by a layer of thickness H and extends downwards to infinity.
Therefore, we will put the sources &(z — z; ) at z = 0 and a negative image source —&(z —zp) atz = 2H, thus

the required Green function will have the following form:

G(z,20) = —ﬁ{e};p[—vm:— zo0|] — expl—vp|z +z0 — 2H|]}.



Thé Greeh Funct'i-on-for 'Love Wave

The Green function of the layer has the following form:

_ﬁ e}{p[v}g(:—:n)] +A4 e};p(vﬁ:) +Be}{p(—vﬁ:); 0<z<zp

_ﬁ exp|—vp(z —z0)] +Aexp(vpz) + Bexp(—vpz), zo <z < H

differentiating with respect to z, we get:

) —
%9 =

— - expl[vp(z —z0)] +Avpexp(vpz) — Bvpexp(—vpz)

% exp[—vp(z —z0)] +Avgexp(vpz) — Bvgexp(—vgs)

and applying the boundary condition, we obtain the required Green function for the layer

G(z,z0) = — 1 {expl-vp|z—z0|] +

2vp

exp[—vg(H — z0)] + expl-vs(H + z0)
exp(vpH) — exp(—vpH)

]+

exp(vpz)[

explvp(H — z0)] + expl—vs(H —
exp(vpH) — exp(—vpH)

exp(—vpa)[ Zo) 1y,




The Differential Operator for Rayleigh Waves

The Rayleigh wave differential operator is given as a two coupled equations:

9 Gy o143 %14 8 ul
(’l+:“) Oy (55:1 + 8x3)+'“( ol T ) = 533

A+ W) (3+ 2) + (52 + 52) = p

iy O3 8r3 .

The displacement fields of the Rayleigh wave are given by the equations:

w1 = f1(z) expli(wt — xx)]
iy =0

u3 = f3(z) expli(wt — xx)].




The Differential Operator for Rayleigh Waves

Substituting all the derivativs and simplifying, we finalty obtain:

A% 2 RE 42 2 dz
I+ il = pito{pfroth - Svp[L-(S4 + Evimly

dfs . B2 2 dfs 2 2,8% o ar_1 (df ot 2
o+ vﬁ = PP o{pa Sl vﬂ,[ng (S + o vaf3)]},
where g = [Z2H B= [E 42 =2 _j2 2 =2 2 o= 25 G2
a? B B2 p(A+2p)

and after some simplifications, we end up with the following two decoupled equations:

d 2 ) -:1'12
Ez'ai"'{ﬁ - vé—plazﬁlﬁz}ﬁ+v§v%ﬁ = 0

4 2 9
ab g {f—gv% -+ ;—zvé ialin 3}—L+v v%ﬁ; = 0,



The Differential Opérat-or for Raylei'gh Waves

The Rayleigh wave operator L is defined as:

Lvi — pPa® Pt} + vivh.



The Green Function for Rayleigh Waves

There will be two Green functions for the Rayleigh waves operator L corresponding to = and 57" swface

waves, namely &7, and ;. The Green functions {F,(z,zp) ./ = 1,3 must satisfy the following conditions:

L(G;) =0 0<:z<zp
LG)=0 =z <5<

(vi—vi
B1(G1) {’?kz (wﬁ+k2j = vf;}G1 = 0, atz =0
B2(G1) : < Gl — {2k* i:i;j +v5 — 2vEp - 2~ 0,atz =0,
(vi—y
B1(G3) : 2 o3 ﬁ vilG3 =0,atz =0
e .g3 B f{zvﬁ+2va ng dl; _
BE(G.}) { (vg _pa Z‘Ha } - :v - 0




The Green Function for Rayleigh Waves

GRle! :
(dﬁdg) ;, are confinuous at = = o,
gz

G (8°,20) — £ G 5(20°,70) =

G; — 0 as:—rmjj=lj3.

r:I'G
— + {v3 +vﬁ} +vavﬁG 0,

which has the characteristic equation:
rt+ {vs + vt + (vavp)r =

The characteristic equation has the four roots Hiv, and +ivs. Corresponding to those roots, we get four

linearty independent solutions: exp {iv.z}, exp{—ivaz}, exp{iv sz}, exp{—ivz}.



The Green Function for Rayleigh Waves

The general solution for the Green functions can be expressed as:

o 3 . 3 . !
Ai(za) exp{ivaz) + By(zo) exp{—ivaz} +
G ( - ) J Ci(zp ) explivpz) + Dy(zp ) exp{—ivpz) | z < 2 i
. : D — i
A\ -
) ) i 1 . ) TH \
) Ei(zo ) expivaz) + Fi(zp)expiivpzy z>z | |

with Iim(v, ) > 0 and Im(vgz) > 0.



The Green Function for Rayleigh Waves

After applying the boundary conditions, we obtain the Green function for the P surface wave:

G1(z,20) =

I

2y1(v: - v}%)

il

expii(vpzo + vaz)p

vp exp{i(vazo + vpz)

Ve

kl

]_

12|

exp{ivy(zo +2)}

e}{p{ivﬁ (:[;. + :)})

Vg

+ V5

Iy +

[]

exp{iva(z—z0)}  €xpiivp(c—=zo0))

L

2(va — v§)

1H(z - zo)

Va

'

VE

B}ip{ivﬁ (zo — :)}

+]

[

expiiva(zo —2)}
V

VP

1H(z0 - 2)}




The Green Function for Rayleigh Waves

Similarly, the Green function for the SV swface wave is:

va exXpii(vpzo + vaz)y  exp{i(vazo + vpz)
2 B Va

G3(z,z0) = 'i &l ]+

2y1(v: - vf‘;)

- BXP{W% (;n t2)) ﬁP{WﬁgD +2)}) I+
[]
j exp{ive(z —z0)}  expiivp(z —zo)} H(-— -
2(vs — v) L Va Vg Ji(z = 20)
FpeiivaCo ) SO -, ),

where H(z — zj ) is the Heaviside unit step function. The last two equations represent the Green functions for SV

Waves.,



The Linearized Inversion for Scattered
Surface Waves | | |

We now turn our attention to the inverse problem: Given ii; (X, X;, @) for all x; € ¢ and all x; = ¢, where ¢, are
arbitrarity fixed open subsets in ¢ and all w = (0, wq ), find 7(x,z).

Tthe linearized forward formula can be expressed as:

11 (xg,x5,2,0) = —%F(m) ID G* (x5, x,2, 0)1(x,2)G* (x, xg, 2, 0) exp[i2(kx — Kkz) |dxd=,

wher G(xs,x,z, w) = S5, 0)G*(xs,x,2, w) explilicr —kz)] and Gx,xg,2, w) = Rlxg, w)G*(xX,xg,2, @) expi(kx — kz)].

Further « = Jé"—n.'I‘hus we have:

11 (xg,%5,2,0) = —E—EF({I}) ID G*(xs,x,2,0)1(x,2)G*(x, xXz,2, ©) e};p[lé—?(x — z)|dxd-,

which represents a fourier-like transform which can be inverted using the mverse Fourier transform and we get:

n((x,z) = —;T%IthzF(m)GJ“(xg,m) 11 (xg,%5,2,0)G" (xz, ®) e}{p[—%—?(x —2)]dw



The Linearized Inversion for Scattered
Surface Waves, the Algorithm

The forward integral formula is digitized by dividing the volume into regular cells to get:

.i: s !
11 (31,2, Zn W5 ) = E” (Do . Flog )7 (1,20, 0 )N (ms 20 )GF (X520, wk;e*«:p[ r':::m Zn)]

where | represents the source number, ; represents the receiver number, & represents the frequency number, and i
represents the midpoint cell number between the source ; and the receiver ; and can be written as in = ¢ + /. Thus,
11X, X5, 2y, wy ) represents single scattered wavefield generated at the source i and recorded at the receiver ; with a
frequency component . 1)(xn, 2, ) represents the velocity perturbation within midpoint cell 7 and layer . To simplify the

problem, we define;

2
A 35,70, 01) = S-FODG (2,2 04)G (87,7, 08) X[ 22— =)

O

where Ay, (X, X5, 2, wy, ) represents all the single scattered wavefield corresponding to the midpoint cell 7 and layer .



The Linearized Inversion for Scattered
Surface Waves, the Algorithm

Then the digcretized forward formula can be written ag;

i1 (‘xl‘.ﬁ xj.‘::ﬂ.ﬁ w.IC) = E Edﬁlﬂiﬂ (J[T;'_.,xj',, :.1 wk) f](xm.ﬁ :P‘I)-
The last expression can be further simplified as:
d = An.

Multiplying both sides of the last equation by (4*4)~'4 where 4* is the complex conjugate transpose of 4 to get:

= (4*4)4d



The Linearized Inversion for Scattered
Surface Waves, the Algorithm

Therefore, the inverse formula for the perturbation is given by:

-lf(-xzﬂ'.a:n) = E (?Ij(wk).ﬁ

SOUPCES
PECEIVErS
Jrequencies

layers

suggesting that the summation is done over the sources, receivers, frequencies and layers. Hence, the last formula will give
us the perturbations which will allow us to update the velocity of the studied medium. Consequently, we have arrived at

our goal ”determination of the near surface velocity profile by linearized inversion of scattered surface wavefield”.






