Introduction to Differential Equations and Linear <u>Algebra</u>

Ordinary Differential Equation (ODE)

An equation that contains one or several (ordinary) derivatives of one or more dependent variables with respect to a single independent variable is called an ODE.

Some ODE's

(1):	dy/dx=1;	(2):	dy/dx+dw/dx = x;
(3):	$d^2y/dx^2+dy/dx+y=0;$	(4):	$d^{2}y/dx^{2}+(dy/dx)+y =0;$

(5): ydx + (x-1) dy=0. (6): $dy/dx+x(y)^2=1$ (nonlin)

(7): $(dy/dx)^2 = xy$ (nonlin) (8): ydy/dx = 1 (nonlin)

(9): dy/dx=coty (nonlin) (10): y//+p(x)y/+q(x)y=r(x)(Linear ODE)

Order of an ODE

The order of the highest derivative in an ODE is called the order of the ODE.

Where & how do the ODE's arise

The ODE's arise in many engineering problems and those situations that represent various natural phenomenons:

ODE	Situation represented by the ODE			
dy(t)/dt=k y(t)	Population growth rate (dy/dt) proportional to			
$y(t)=c e^{kt}$	population present			
$d^2y(t)/dt^2 = kg$	Acceleration of a falling object is proportional to "g"			
$y(t) = (k/2)gt^2 + v_0t + y_0$				
$dT/dt = k(T_{surr} - T_{body})$	Newton's law of cooling			
dT/dt>0 if T _{surr} >T _{body}				
and dT/dt<0 if				
T _{surr} >T _{body}				
$dV(t)/dt = -k \sqrt{y}$	Time rate of change of volume proportional to the depth			
	of water			

Do All ODE's Have Solutions?

NO

Example 1: $(dy/dx)^2 + y^2 = -1$ has no solution. Example 2: $(dy/dx)^2 + (y)^2 = 0$ has a *trivial* solution only. *(y=0 is called trivial solution)* Order of ODE's:

Order of the highest derivative that appears in an ODE is called the order of the

ODE. Example 1: dy/dx = 1 Example 2: d²y/dx² +dy/dx + y =0 Example 3: x²y["]y'+2e^x y" = (x²+2)y² <u>Representation of ODE's</u>

● F(x, y, y')=0,
 ● F(x,y,y',y")=0
 ● F(x,y,y',...,y(n))=0
 Solution of ODE's

1st order ODE 2nd ordr ODE 3rd order ODE (y'=dy/dx)

1st order ODE 2nd order ODE nth order ODE

Y = u(x) is called a solution of the above ODE's if F(x, u, u'), F(u, u', u''), and ... $F(x, u, u', ..., u^{(n)})$ are all identically equal to zero on some interval (a, b). This means that all of the ODE's become identities when y, y', ..., $y^{(n)}$ are replaced respectively by u, u', ..., u $\binom{n}{2}$.

Initial Value Problem

A problem dy/dx = f(x, y) is called an initial value problem if it is subject to a condition that its solution $y(x_0) = y_0$ on an interval containing x_0 . Such a condition gives rise to unique solution of the ODE as opposed to a problem with no such condition. By unique means that this condition determines the constant that appears in the solution of the ODE by a unique value.

Example: Find the constant "C" in y(t)= Ce^{kt} that is a solution of the ODE dy(t)/dt=ky subject to y(0)=2.

Solution:

Step 1: $dY(t)/dt = Cke^{kt} = k (Ce^{kt}) = ky$. Thus the given y(t) is a solution of the ODE. Step 2: y(0) = C = 2. Thus the solution of the ODE is $y(t) = 2 e^{kt}$.

Integrals as General and Particular Solutions

$1^{\underline{st}}$ order ODE dy(x)/dx = f(x):

Integrate both sides of the above equation over "x" to get

$$y(x) = \int f(x)dx + C \tag{1}$$

Eq. (1) is called the General Solution of the equations dy/dx = f(x) with C integration constant.

<u>Particular Solution of a 1st Order ODE</u>(We understand it by an example)

Solve the initial value problem dy/dx=2x+3 subject to y(1)=2. Solution: Integrate both sides of the above equation to get:

$$Y(x) = x^2 + 3 x + C$$

The above solution is a general solution. Now we substitute the initial condition y(1)=2 to find that:

$$2 = (1)^2 + 3(1) + c \quad c = -2.$$

This condition gives particular solution of the above equation:

$$Y(x) = x^2 + 3 \times -2$$

Velocity and Acceleration:

The motion (curve) of a particle along a straight line is represented by x = f(t).

At any time "t" the velocity of the particle is defined by: V= dx/dt=f'(t).

The acceleration of the particle is represented by:

$\underline{a}=d\underline{V}/dt=d^{2}x/dt^{2}$

Newton's second law implies from here: <u>F=ma</u> F=m

d^2x/dt^2

The above equation being a 2nd order ODE there are two constants involved and are determined by initial position $X(0)=X_0$ and initial velocity $V(0)=V_0$ in the following way:

Write dV/dt = a (a being constant) and integrate with respect to "t" to get

$$V = dx / dt = \int a dt + A = at + A .$$
 (1)

- Require that $V(0)=V_0$ to get $V_0=A$. Thus equation (1) becomes: $V = dx/dt = at + V_0$ (2)
- Integrate equation (2) over "t" once again to get:

$$x(t) = \frac{1}{2}at^2 + V_0t + B$$
(3)

Require that X(0)=X₀ to get B=X₀. Thus equation (3) takes the form:

$$x(t) = \frac{1}{2}at^2 + V_0 t + X_0$$
(4)

1.4: Separable Equations and their Applications

<u>1st order Separable ODE dy(x)/dx = F(x, y):</u>

The above equation is called separable if we can write: F(x, y) = f(x)/g(y). Thus the ODE becomes:

$$dy/dx = f(x)/g(y) \Rightarrow g(y)dy = f(x)dx$$

(1) Integrating (1) on both sides we get:

$$H(y) = K(x) + C, \text{ where}$$

$$H(y) = \int g(y) dy \text{ and } K(x) = \int f(x) dx$$

(2)

<u>Illustration by Example</u>: Solve dy/dx = -6xy subject to y(0)=7.

Solution:

The ODE is separable and becomes: dy/y = -6xdx.

$$\ln y = -3x^2 + \ln C \quad or$$

Its general solution is: $y = Ce^{-3x^2}$

Initial condition gives: $_{7=C}$

Thus the initial value solution becomes:

 $y = 7e^{-3x^2}$

Example: Find general solution of the dy/dx+2xy²=0. Rewrite the differential equations as $dy/dx = -2xy^2$ Separate variables

 $\frac{dy}{r^2} = -2xdx$ Integrate both sides

$$\int \frac{dy}{y^2} = \int -2xdx$$

which gives
 $y^{-1} = (-x^2 + c)$
or $y = 1/(c - x^2)$

First Order Linear Differential Equation

Consider the ODE dy/dx + P(x)y = Q(x) where P(x) & Q(x) are continuous on the interval of solution of the ODE. Then the integrating factor, $\rho(x)$, is defined by:

$$\rho(x) = e^{\int P(x) dx}.$$

Multiply by this integrating factor on both sides and write the result as:

$$\frac{d}{dx}(e^{\int P(x)dx}y) = Q(x)e^{\int P(x)dx}$$

Integrating the above equation on both sides gives:

$$y(x) = e^{-\int P(x)dx} [\{Q(x)e^{\int P(x)dx}\}dx + c]$$

Example: Solve the ODE $\frac{dy}{dx} - y = \frac{11}{8}e^{-\frac{x}{3}}$ subject to y(0)=-1.

Solution.

- Step 1. The IF for the above ODE is: $\rho(x) = e^{\int -dx} = e^{-x}$
- Step 2. The ODE becomes:

 $\frac{d}{dx}(e^{-x}y) = \frac{11}{8}e^{-\frac{4x}{3}}$ $y(x) = -\frac{33}{22}e^{-\frac{x}{3}} + e^{x}c$

- Step 3. Integrating above gives: $y(x) = -\frac{33}{32}e^{-\frac{x}{3}} + e^{x}c$
- Step 4. Use the initial condition y(0)=-1 to get:

$$-1 = -\frac{33}{32} + c \Longrightarrow c = \frac{1}{32}$$

Step 5. The solution of the ODE becomes: $y(x) = (-33e^{-\frac{x}{3}} + e^{x})/32$ Manual