Introduction to Differential Equations and Linear Algebra

Ordinary Differential Equation (ODE)

An equation that contains one or several (ordinary) derivatives of one or more dependent variables with respect to a single independent variable is called an ODE. Some ODE's
(1): $\mathrm{dy} / \mathrm{dx}=1$;
(2): $d y / d x+d w / d x=x$;
(3): $d^{2} y / d x^{2}+d y / d x+y=0$;
(4): $d^{2} y / d x^{2}+(d y / d x)+y=0$;
(5): $y d x+(x-1) d y=0$.
(6): $d y / d x+x(y)^{2}=1$ (non7in)
(7): $(d y / d x)^{2}=x y$ (nonlin)
(8): $y d y / d x=1$ (nonlin)
(9): $d y / d x=$ coty (nonlin) (10): $y / /+p(x) y /+q(x) y=r(x)$ (Linear ODE)

Order of an ODE

The order of the highest derivative in an ODE is called the order of the ODE.

Where \& how do the ODE's arise

The ODE's arise in many engineering problems and those situations that represent various natural phenomenons:

ODE	Situation represented by the ODE
$\begin{gathered} \mathrm{dy}(\mathrm{t}) / \mathrm{dt}=\mathrm{k} \mathrm{y}(\mathrm{t}) \\ \mathrm{y}(\mathrm{t})=\mathrm{ce}^{\mathrm{kt}} \end{gathered}$	Population growth rate ($\mathrm{dy} / \mathrm{dt}$) proportional to population present
$\begin{aligned} & \mathrm{d}^{2} \mathrm{y}(\mathrm{t}) / \mathrm{dt}^{2}=\mathrm{kg} \\ & \mathrm{y}(\mathrm{t})=(\mathrm{k} / 2) \mathrm{gt}^{2}+\mathrm{v}_{0} \mathrm{t}+\mathrm{y}_{0} \end{aligned}$	Acceleration of a falling object is proportional to "9"
$\begin{aligned} & \mathrm{dT} / \mathrm{dt}=\mathrm{k}\left(\mathrm{~T}_{\text {surr }}-\mathrm{T}_{\text {body }}\right) \\ & \mathrm{dT} / \mathrm{dt}>0 \text { if } \mathrm{T}_{\text {surr }}>\mathrm{T}_{\text {body }} \\ & \text { and } \quad \mathrm{dT} / \mathrm{dt}<0 \\ & \mathrm{~T}_{\text {surr }}>\mathrm{T}_{\text {body }} \\ & \hline \end{aligned}$	Newton's law of cooling
$\mathrm{dV}(\mathrm{t}) / \mathrm{dt}=-\mathrm{k} \sqrt{y}$	Time rate of change of volume proportional to the depth of water

Do All ODE's Have Solutions?

NO
Example 1: $(d y / d x)^{2}+y^{2}=-1$ has no solution.
Example 2: $(\mathrm{dy} / \mathrm{d} x)^{2}+(y)^{2}=0$ has a trivial solution only. ($y=0$ is called trivial solution) Order of ODE's:
Order of the highest derivative that appears in an ODE is called the order of the

ODE.
Example 1: $\mathrm{dy} / \mathrm{dx}=1$
Example 2: $d^{2} y / d x^{2}+d y / d x+y=0$
Example 3: $x^{2} y^{\prime \prime \prime} y^{\prime}+2 e^{x} y^{\prime \prime}=\left(x^{2}+2\right) y^{2}$
Representation of ODE's
© $F\left(x, y, y^{\prime}\right)=0$,
(- $F\left(x, y, y^{\prime}, y^{\prime \prime}\right)=0$

- $F\left(x, y, y^{\prime}, \ldots, y(n)\right)=0$

1st order ODE
2nd ordr ODE 3rd order ODE $\left(y^{\prime}=d y / d x\right)$

$$
\begin{aligned}
& 1^{\text {st }} \text { order ODE } \\
& 2^{\text {nd }} \text { order ODE } \\
& n^{\text {th }} \text { order ODE }
\end{aligned}
$$

Solution of ODE's
$y=u(x)$ is called a solution of the above ODE's if $F\left(x, u, u^{\prime}\right), F\left(u, u^{\prime}, u^{\prime \prime}\right)$, and $\ldots F\left(x, u, u^{\prime}\right.$, $\ldots, u^{(n)}$) are all identically equal to zero on some interval (a, b). This means that all of the ODE's become identities when $y, y^{\prime}, \ldots, y^{(n)}$ are replaced respectively by u, u^{\prime}, \ldots, u (n).

Initial Value Problem

A problem $d y / d x=f(x, y)$ is called an initial value problem if it is subject to a condition that its solution $y\left(x_{0}\right)=y_{0}$ on an interval containing x_{0}. Such a condition gives rise to unique solution of the ODE as opposed to a problem with no such condition. By unique means that this condition determines the constant that appears in the solution of the ODE by a unique value.
Example: Find the constant " C " in $y(t)=C e^{k t}$ that is a solution of the ODE $d y(t) / d t=k y$ subject to $y(0)=2$.
Solution:
Step 1: $d Y(t) / d t=C k e^{k t}=k\left(C e^{k t}\right)=k y$. Thus the given $y(t)$ is a solution of the ODE.
Step 2: $y(0)=C=2$. Thus the solution of the ODE is $y(t)=2 e^{k t}$.

Integrals as General and Particular Solutions

$1^{\text {st }}$ order ODE $d y(x) / d x=f(x)$:
Integrate both sides of the above equation over " x " to get

$$
\begin{equation*}
y(x)=\int f(x) d x+C \tag{1}
\end{equation*}
$$

Eq. (1) is called the General Solution of the equations $d y / d x=f(x)$ with C integration constant.
Particular Solution of a $1^{\text {st }}$ Order ODE(We understand it by an
example)
Solve the initial value problem $d y / d x=2 x+3$ subject to $y(1)=2$.
Solution: Integrate both sides of the above equation to get:

$$
y(x)=x^{2}+3 x+c
$$

The above solution is a general solution. Now we substitute the initial condition $y(1)=2$ to find that:

$$
2=(1)^{2}+3(1)+c \quad c=-2 .
$$

This condition gives particular solution of the above equation:

$$
y(x)=x^{2}+3 x-2
$$

Velocity and Acceleration:
The motion (curve) of a particle along a straight line is represented by x $=f(t)$.
At any time " t" the velocity of the particle is defined by: $\underline{V}=$ $d x / d t=f^{\prime}(t)$.
The acceleration of the particle is represented by: $a=d V / d t=d^{2} x / d t^{2}$
Newton's second law implies from here:
$d^{2} x / d t^{2}$
The above equation being a 2nd order ODE there are two constants involved and are determined by initial position $X(0)=X_{0}$ and initial velocity $V(0)=\mathrm{V}_{0}$ in the following way:
Write $\mathrm{dV} / \mathrm{dt}$ = a (a being constant) and integrate with respect to " t " to get

$$
\begin{equation*}
V=d x / d t=\int a d t+A=a t+A . \tag{1}
\end{equation*}
$$

- Require that $\mathrm{V}(0)=\mathrm{V}_{0}$ to get $\mathrm{V}_{0}=\mathrm{A}$. Thus equation (1) becomes:

$$
\begin{equation*}
V=d x / d t=a t+V_{0} \tag{2}
\end{equation*}
$$

- Integrate equation (2) over " t " once again to get:

$$
\begin{equation*}
x(t)=\frac{1}{2} a t^{2}+V_{0} t+B \tag{3}
\end{equation*}
$$

- Require that $X(0)=X_{0}$ to get $B=X_{0}$. Thus equation (3) takes the form:

$$
\begin{equation*}
x(t)=\frac{1}{2} a t^{2}+V_{0} t+X_{0} \tag{4}
\end{equation*}
$$

1.4: Separable Equations and their Applications
$1^{\text {st }}$ order Separable ODE $d y(x) / d x=F(x, y)$:
The above equation is called separable if we can write: $F(x, y)=f(x) / g(y)$. Thus the ODE becomes:

$$
d y / d x=f(x) / g(y) \Rightarrow g(y) d y=f(x) d x
$$

(1)

Integrating (1) on both sides we get:

$$
\begin{align*}
& H(y)=K(x)+C, \text { where } \\
& H(y)=\int g(y) d y \text { and } K(x)=\int f(x) d x \tag{2}
\end{align*}
$$

Illustration by Example: Solve $d y / d x=-6 x y$ subject to $y(0)=7$.

Solution:

The ODE is separable and becomes: $d y / y=-6 x d x$.

$$
\ln y=-3 x^{2}+\ln C \text { or }
$$

Its general solution is: $y=C e^{-3 x^{2}}$
Initial condition gives: $7=C$
Thus the initial value solution becomes:

$$
y=7 e^{-3 x^{2}}
$$

Example: \quad Find general solution of the $d y / d x+2 x y^{2}=0$.
Rewrite the differential equations as
$d y / d x=-2 x y^{2}$
Separate variables
$\frac{d y}{2}=-2 x d x$
Integrate both sides
$\int \frac{d y}{x^{2}}=\int-2 x d x$
which gives
$y^{-1}=\left(-x^{2}+c\right)$
or $y=1 /\left(c-x^{2}\right)$

First Order Linear Differential Equation

Consider the ODE $d y / d x+P(x) y=Q(x)$ where $P(x) \& Q(x)$ are continuous on the interval of solution of the ODE. Then the integrating factor, $\rho(x)$, is defined by:

$$
\rho(x)=e^{\int P(x) d x} .
$$

Multiply by this integrating factor on both sides and write the result as:

$$
\frac{d}{d x}\left(e^{\int P(x) d x} y\right)=Q(x) e^{\int P(x) d x}
$$

Integrating the above equation on both sides gives:

$$
y(x)=e^{-\int P(x) d x}\left[\left\{Q(x) e^{\int P(x) d x}\right\} d x+c\right]
$$

Example: Solve the ODE $\frac{d y}{d x}-y=\frac{11}{8} e^{-\frac{x}{3}}$ subject to $y(0)=-1$.

Solution.

Step 1. The IF for the above ODE is: $\rho(x)=e^{I-d x}=e^{-x}$
Step 2. The ODE becomes:

$$
\frac{d}{d x}\left(e^{-x} y\right)=\frac{11}{8} e^{-\frac{4 x}{3}}
$$

Step 3. Integrating above gives: $y(x)=-\frac{33}{32} e^{-\frac{x}{3}}+e^{x} c$
Step 4. Use the initial condition $y(0)=-1$ to get:

$$
-1=-\frac{33}{32}+c \Rightarrow c=\frac{1}{32}
$$

Step 5. The solution of the ODE becomes:
$y(x)=\left(-33 e^{-\frac{x}{3}}+e^{x}\right) / 32$

