Linear Differential Equations with Constant Coefficients

A differential equation of the type
$a_{0} d^{n} y / d x^{n}+a_{1} d^{n-1} y / d x^{n-1}+\ldots \ldots . . a_{n-1} d y / d x+a_{n} y=0$
is a linear, homogeneous differential equation of order n with $\mathrm{a}_{0}, \ldots \ldots \mathrm{a}_{\mathrm{n}}$ constants.
We seek a solution of the type $y=e^{m x}$. This leads to $y^{(n)}=m^{n} e^{m x}, n=$ 1,2,3....
Putting in the differential equation (1), we obtain
$\left(a_{0} m^{n}+a_{1} m^{n-1}+\ldots \ldots \ldots \ldots+a_{n-1} m+a_{n}\right) e^{m x}=0$.
This gives the algebraic equation of degree n in m known as auxiliary equation
$\mathbf{a}_{0} \mathbf{m}^{\mathrm{n}}+\mathbf{a}_{1} \mathbf{m}^{\mathrm{n}-1}+\ldots \ldots \ldots \ldots .+\mathbf{a}_{\mathrm{n}-1} \mathbf{m}+\mathbf{a}_{\mathrm{n}}=0$.
This can have all real distinct roots, real roots with some repeated roots, some or all roots complex which appear in conjugate pairs.

Case 1

If the auxiliary equation has real distinct roots
$m_{1}, m_{2}, m_{3}, \ldots$. , then the DE (1) has linearly independent solutions
$e^{m_{1}}{ }_{1}, e^{m_{2}}, e^{m_{3}}{ }^{x}$

The general solution will be of the form
$\mathrm{y}(\mathrm{x})=\mathrm{C}_{1} \mathrm{e}^{\mathrm{m}_{1} \mathrm{x}}+\mathrm{C}_{2} \mathrm{e}^{\mathrm{m}}{ }_{2}^{\mathrm{x}}+\mathrm{C}_{3} \mathrm{e}^{\mathrm{m}_{4} \mathrm{x}}+\ldots$

Case 2

If the auxiliary equation have some repeated roots, say $\mathrm{m}=\mathrm{m}_{1}=\mathrm{m}_{2}$, then the corresponding terms in the general solution will be of the form
$C_{1} \mathbf{e}^{m x}+C_{2} x \mathbf{e}^{m x}$

Case 3

If the auxiliary equation has the pair $\mathrm{m}=\alpha \pm \beta$ as roots, the corresponding terms in the general solution will be
$e^{\alpha x}\left[C_{1} \cos (\beta x)+C_{2} \sin (\beta x)\right]$
Example (1)
$y^{\prime \prime}+5 y^{\prime}-6 y=0$
The auxiliary equation is
$m^{2}+5 m-6=0$.

This has solutions $\mathrm{m}=1,-6$. The general solution is given by
$y(x)=C_{1} e^{x}+C_{2} e^{-6 x}$.

Example (2)
$y^{\prime \prime}+10 y^{\prime}+25 y=0$
The auxiliary equation is
$m^{2}+10 m+25=0$.

This has solutions $\mathrm{m}=-5,-5$ (repeated roots)
The corresponding term in the general solution are
$\mathrm{Y}(\mathrm{x})=\mathrm{C}_{1} \mathrm{e}^{-5 x}+\mathrm{C}_{2} x \mathrm{e}^{-5 x}$.

Example (3)
$y^{\prime / \prime}-y=0$
The auxiliary equation is
$\mathrm{m}^{3}-1=0 \rightarrow(\mathrm{~m}-1)\left(\mathrm{m}^{2}+\mathrm{m}+1\right)=0$
This has roots
$m=1,-1 / 2 \pm \sqrt{ }(3 / 2) i$
The corresponding terms in the general solution will be
$C_{1} e^{x}+e^{-1 / 2 x}\left[C_{2} \cos (\sqrt{ }(3 / 2) x)+C_{3} \sin (\sqrt{ }(3 / 2) x)\right]$.

Cauchy Euler Equation

The equation of the following type is known as the Cauchy Euler equation (homogeneous form)
$x^{n} y^{(n)}+a_{1} x^{n-1} y^{(n-1)}+a_{2} x^{n-2} y^{(n-2)}+\ldots . .+a_{n} y=0$.
We can reduce this equation into DE with constant coefficients using the following change of independent variable
$\mathrm{x}=\mathrm{e}^{\mathrm{t}}$, or $\mathrm{t}=\ln \mathrm{x}$.
Using chain rule
$d y / d x=(d y / d t)(d t / d x)$.
As $\mathrm{dt} / \mathrm{dx}=1 / \mathrm{x}$, $d y / d x=(1 / x)(d y / d t)$.
Applying the chain rule again

$$
\begin{aligned}
\mathrm{d}^{2} \mathrm{y} / \mathrm{dx}^{2} & =\left(-1 / x^{2}\right)(\mathrm{dy} / \mathrm{dt})+(1 / \mathrm{x})(1 / \mathrm{x})\left(\mathrm{d}^{2} \mathrm{y} / \mathrm{dt}^{2}\right) \\
& \left.=\left(-1 / \mathrm{x}^{2}\right)(\mathrm{dy} / \mathrm{dt})+(1 / \mathrm{x})^{2} \mathrm{~d}^{2} \mathrm{y} / \mathrm{dt}^{2}\right)
\end{aligned}
$$

Example (1)

Find a general solution to
$3 x^{2} y^{\prime \prime}+11 x y^{\prime}-3 y=0$.
Using above change of variables and values of y^{\prime} and $y^{\prime \prime}$,
$3\left(d^{2} y / d t^{2}-d y / d t\right)+11 d y / d t-3 y=0$
which reduces to
$3 d^{2} y / d t^{2}+8 d y / d t-3 y=0$
The roots of the auxiliary equation are
$\mathrm{m}=1 / 3$, and $\mathrm{m}=-3$.
The general solution is
$y(t)=C_{1} e^{-(1 / 3) t}+C_{2} e^{-3 t}$,
using $\mathrm{t}=\ln \mathrm{x}\left(\right.$ or $\left.\mathrm{x}=\mathrm{e}^{\mathrm{t}}\right)$
$\mathrm{y}(\mathrm{x})=\mathrm{C}_{1} \mathrm{x}^{-1 / 3}+\mathrm{C}_{2} \mathrm{x}^{-3}$.
Example (2)
Solve $\mathrm{x} \mathrm{y}^{\prime \prime}-\mathrm{y}^{\prime}=0$.

This can be written in the Cauchy Euler form by multiplying throughout by x
$x^{2} y^{\prime \prime}-x y^{\prime}=0$.
The above change of variable now gives
$d^{2} y / d t^{2}-d y / d t-d y / d t=0$.
Or, $\mathrm{d}^{2} \mathrm{y} / \mathrm{dt}^{2}-2 \mathrm{dy} / \mathrm{dt}=0$.
The roots of the auxiliary equation are $\mathrm{m}=0,2$.
The general solution in terms of t is
$y(t)=C_{1}+C_{2} e^{2 t}$,
which in terms of x is
$y(x)=C_{1}+C x^{2}$.

