DEPARTMENT OF MATHEMATICAL SCIENCES
 MATH 301 Methods of Applied Mathematics Term 061 QUIZ \# 2(a)

Name \qquad ID \# \qquad Section \# \qquad

Q1) In the following question, use Green's theorem to write R.H.S of the given line integral as a double integral, showing correct integral limits (Do not evaluate integrals in this question).
(a) $\oint_{C}\left(x^{2}+y^{2}\right) d x+\left(x^{2}-y^{2}\right) d y=$
where C is triangle counterclockwise with vertices $\mathrm{A}(1,3), \mathrm{B}(2,3)$ and $\mathrm{C}(2,6)$.
(b) $\int_{C} 4 y \sin ^{2} x d x-5 x \cos ^{2} y d y=$

Where C is closed counter clockwise by $y=4-x^{2}, y$-axis and $y=x$.

Where \mathbf{C} is $x^{2}+y^{2}=1$.

DEPARTMENT OF MATHEMATICAL SCIENCES
 MATH 301 Methods of Applied Mathematics Term 061
 QUIZ \# 2(b)

Name \qquad ID \# \qquad Section \# \qquad

Q1) In the following question, use Green's theorem to write R.H.S of the given line integral as a double integral, showing correct integral limits (Do not evaluate integrals in this question).
(a) $\oint_{C}-x^{4} y^{2} d x+x^{2} y^{4} d y=$
where C is triangle counterclockwise with vertices $\mathrm{A}(0,0), \mathrm{B}(1,0)$ and $\mathrm{C}(1,2)$.
(b) $\oint_{C}\left(2 y+x^{2}\right) d x-\left(3 x-4 y^{2}\right) d y=$

Where C is closed counter clockwise by $y=x^{2}$, and $x=y^{2}$.

Q2) Evaluate the integral using Green's theorem $\oint_{C} 4 y d x+5 x d y$
Where C is formed by $y=x^{2}$, and $y=1$..

DEPARTMENT OF MATHEMATICAL SCIENCES
 MATH 301 Methods of Applied Mathematics Term 061 QUIZ \# 2(c)

Name \qquad ID \# \qquad Section \# \qquad

Q1) In the following question, use Green's theorem to write R.H.S of the given line integral as a double integral, showing correct integral limits (Do not evaluate integrals in this question).
(a) $\oint_{C} x^{3} y d x+x y^{3} d y=$
where C is triangle counterclockwise with vertices $A(-3,1), B(0,1)$ and $C(0,3)$.
(b) $\oint_{C} y \sin ^{2} x d x-x \cos ^{2} y d y=$

Where C is closed counter clockwise by $y=x^{3}$, and $x=y$

Q2) Evaluate the integral using Green's theorem $\oint_{C} x^{2} d y$
Where C is given by $x^{2}+y^{2}=9$.

