KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

Department of Mathematical Sciences

Math 301	Method of Applied Mar	thematics	
Major Exam #	2	Term 061	
Time Allowed 90 minutes			
Name	ID #	_ Section #	

Q #	Grade	
1	/ 4	
2	/ 4	
3	/ 4	
4	/4	
5	/4	
Total	/ 20	

Important Note

Show all work.

Use of programmable calculator is not allowed. Mobiles and paging devices should not be carried during examination.

Instructor: F. D. Zaman

Q # 1 Find the Laplace transform of the following.

(a)
$$f(t) = \begin{cases} \pi - t, & 0 < t < \pi \\ 0, & \pi \le t < 2\pi \end{cases}$$
$$f(t) \text{ is periodic: } f(t + 2\pi) = f(t)$$

(b)
$$f(t) = t \left\{ \int_{0}^{t} \tau e^{-\tau} d\tau \right\}$$

Q2) Find the inverse Laplace transform

(a)
$$F(s) = \frac{1}{s^2} \left(\frac{s-3}{s^2+9} \right)$$

(b)
$$F(s) = \frac{s}{(s^2 + 4)^2}$$

Q 3) Solve the following initial value problem
$$y'' + 3y' + 2y = 1 - u(t - 1)$$

$$y(0) = 0, y'(0) = 1.$$

Q4) Find the Fourier series in
$$-\pi < x < \pi$$

$$f(x) = \begin{cases} 0, -\pi < x < 0 \\ e^x, 0 \le x < \pi \end{cases}$$

Q 5) Find the eigenvalues and eigenfunctions of the problem
$$x^2y'' + xy' + \lambda y = 0$$
, $y(1) = 0$, $y(3) = 0$.