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Abstract

We consider a layered ocean of finite depth in which the lower layer is assumed to have
depth dependent properties. The seabed is considered to be either rigid or of a reflecting type.
The perturbation method is used to obtain the eigenvalues and the eigenfunctions of the depth
equation in the case of both the rigid and reflecting seabed. The corrections to the eigenvalues
and eigenfunctions are numerically computed from the perturbation formulae in some case of
interest. © 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

The study of acoustic wave propagation in the ocean has attracted considerable
attention in the past. This has been motivated by the need to understand naval
detections and marine seismology. One of the earliest models based upon wave-
theoretical solutions in a homogeneous model of an ocean was forwarded by Pekeris
[8] who used the normal mode solution of the wave equation to explain the propa-
gation of explosively generated sound on shallow water. Spectral representation of
the wave equation was obtained under the assumption of cylindrical symmetry and
using the separation of the solution of the wave equation into the so-called range
and depth equations. Due to a rich source of mathematical theory available to fol-
low this approach, various studies have followed the Pekeris wave guide model. The
normal mode solution approach following Pekeris can be found in Ahluwalia [1],
Boyles [2] and to some extent in Brekhovskikh and Lysanov [4], and De Santo [5].
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The homogeneous model of the ocean gives rise to a nice eigenvalue problem and
the solution is known as an infinite series of eigenvalues and a family of ortho-
normal eigenfunctions. The eigenvalue of the problem corresponds to the wave
number, and thus to the sound speed. It is however, well known [2,3] that the sound
speed varies due to variation in the temperature, salinity and with the increase in
depth. This variation of the sound speed, however small, significantly affects the
propagation of sound in the ocean. Duston, Verma and Wood [6] have studied the
inhomogeneous model of the ocean in which the sound speed, and hence the
refractive index varies slightly with the depth. They used the perturbation method to
obtain the solution of the depth equation in this interesting case. However, some
studies [7] show that the physical characteristics of the ocean do not vary con-
tinuously or smoothly with depth, but vary in a discontinuous way. They remain
piece-wise constant within certain layers and the change across the interface of these
layers is rather rapid. The thickness of these layers may be variable in different
situations but the horizontal extent of such layers may reach up to tens of kilometers
[4]. Boyles [2] has described the layered model of the ocean to account for such a
behavior.

In most studies [2,3,6] the bottom of the sea is conveniently assumed to be rigid so
that the depth equation of the resulting problem has a nice behaviour. In practical
situations, however, the seabed is not rigid but satisfies the absorbing or impedance
boundary conditions. Physically, it means that part of the acoustic field is reflected
while a part of it is absorbed into the seabed. This interesting situation is one of the
main foci of this study.

In this paper, we attempt to study the problem of acoustic wave propagation in an
inhomogeneous sea consisting of two layers. We use perturbation technique to study
the eigenvalue problem corresponding to this case. Our treatment of the case of a
single layer differs from that presented by Duston, Verma and Wood [6] in two
ways. Firstly, we consider the layered model of the ocean in which the upper layer
has constant physical characteristics while the lower layer has depth dependent
properties. Secondly, we consider the case of reflecting seabed satisfying impedance
type boundary conditions resulting from a more realistic situation in which the
bottom of the sea reflects back a part of the energy as well as that of the more strict
rigid boundary condition.

2. Mathematical model

We present here the two layer model of the ocean as discussed by Boyles [2].
Geometry of a such a model is shown in Fig. 1.

We consider the ocean of depth /4 consisting of two layers of uniform depth d so
that the lower layer has depth & — d. The seabed is considered to be at z = h. The
acoustic pressure p', density p?, velocity ¢; and the wave number k; refer to these
quantities in the ith layer, i = 1, 2. The Helmholtz equation satisfied by the acoustic
pressure p' in the ith layer in terms of cylindrical coordinate assuming radial sym-
metry can be written as
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Geometry of the Problem
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Fig. 1. Geometry of the problem.
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Using the separation of variables, p) = R(r)¢?(2), the depth equation for the func-
tion ¢)(z) takes the form
d2¢(i)
dz2

+ (ki =) =0, i=1,2 )

2.1. Rigid seabed

In case the seabed is assumed to be rigid, we have the following boundary con-
ditions

(a) free surface at z = 0 gives

¢1(0) = 0. 3)
(b) continuity of acoustic pressure at the interface z = d gives

¢(d) = ¢?(a). @)
(c) continuity of the gradient of acoustic pressure at the interfaces give

1d¢g"(@) _ 1d¢2(d)
o dz  pp dz

©)
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(d) rigid bottom at seabed z = / gives

d¢P(h)
=0 (6)

For convenience, let
yp=ki—ii=12. ()
The general solution of the depth Eq. (2) is given by
¢V = Asiny;z4+ Dcosyz, 0<z<d (8)
#? = Bsinyrz 4+ Ccos yrz, d<z<h )

Using the boundary conditions (3)—(6), we obtain

D = 0,
Asinyd = Csinyd+ Bcos yad, (10)
pav1Acosyid = pCcosyd — p1y2Bsiny,d,

wCcosyyh— yaBsinyyh = 0.

This constitutes a homogeneous system of equations in 4, B, C and D For a non-
trivial solution, we must have determinant of the coefficient matrix =0. This gives

sin yd —cosyrd —sin yd
det| yipacosyid yrpisinysd —y,p1co8y2d | =0 (11)
0 —sinyh cos yoh

or, upon expanding the determinant,

Y102 €08 y1dcos ya(h — d) — yap1 sin yidsin ya(h — d) = 0. (12)

This is the characteristic equations satisfied by eigenvalues 4,,. The corresponding
eigenfunctions ¢¥(z) are given by

m

455,1)(2) = Asinyz;0 <z < d,
Sin d 13
PP = Am[ms vh—zod<z<h (13)

The normalization condition would now imply

"1, 1 "1 a2
J p—¢ndz:J — (¢! ))dz+J —(¢P)dz=1. (14)
0 PO 0 P1 d P2
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Carrying out the integration involved we may obtain

h )
1l . T 1 sin” y;d (h_d)
Lpod’"dz‘pl 0w Vz(h—d)< > = 1/G,. (15)

where t = ‘2’ - —cos yidsinyd and ¢ = —sm y2(h — d) cos y»(h — d). Thus choosing

A = G,, the elgenfunctlons would satisfy the orthonormality condition

h
1
JO % ¢n ¢mdz = (Snm s (1 6)

2.2. Reflecting seabed

We now consider the problem of an ocean consisting of two homogenous layers
bounded by a pressure-release surface at the top and a reflecting type bottom below.
The differential equation for the depth function ¢ (z)

240 A
ddfz + (ki = )¢ =0, i=1,2. (17)

The boundary conditions at z =0 and z = d are the same as in the case of rigid
seabed given by Egs. (3), (4), and (5). The boundary condition at the reflecting bot-
tom however now replaces Eq. (6). The new boundary condition in this case is

WD+ agh) = (18)

We notice that if the constant o« = 0, then the rigid boundary condition Eq. (6) is
recovered. The constant « gives a measure of the reflectivity of the seabed.

Using the general solution given by Eqgs. (10) and (11) and using these boundary
conditions, we get

sin y1d —cosyrd —sin y»d
det| y1p2cos y1d Y201 8in yad —201 COs yrd =0
0 —yysin yyh 4+ acos ol y2 cos yah + asin yrh

This is the characteristic equation satisfied by eigenvalues 4,,

In order to determine the eigenfunctions ¢?, we solve for the unknown constants
A,B, C and D in the general solution (8 and 9) subject to the boundary conditions
(3)—(5) and (18) as
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D= 0
Be 4 . sinhyl d .
Yy sin yah — acos ol .
cos y»d - sin y»d
rad (yz cos yoh + asin yzh) v2
C— sin y1d(ys sin y2h — acos ya )

A
c0s yrdyr cos yah + cos yada sin o + (sin yad)(y2d)(y» sin yah — a cos a2 h)
(19)

Letting S = (y, sin y»h — acos y,h), F = cos y»d, H = siny,d, J = sin y;d, the solu-
tions of the depth Eq. (17) become

oV (z) = Asinyz (20)

0m

Ao (sin y22)(y20 — ap) + (€os y22)(y2 it + )
n(y2u + a) + (B)(y2 — ap)

¢(2) —

where sin y»d = B, cos yod = n, sin yh = 9, cos y»h = u, and sin y1d = 0.The nor-
malization condition (16) would imply,

1
L (P + Qo) = 1/, (1)
Pr1 P2

where
. —cosydsiny d+ Vld, (22)
2y
2= y. sins)jnhyldoc cos yrh ’ 23)
d o) 2h —acosyalt\ o g
cosyad+ (yz cos yoh + asin yrh Sy
K, cos yrhsin yoh — yoh — cos yrdsin yod + yzd’ (24)
2y

[~ cos yrhisin vyt — yrh + cos yrdsin yrd + yzd’ (25)

2y

and
r— (y2 sin yoh — a.cos yrh) sin vy d
" (cos yad)ys cos ol + (cos yrd)a sin ot 4 (Sin yad)ys sin y2h — (sin yad)a cos yoh
(26)
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The cigenfunctions of the depth equation satisfy the orthonormality condition (16) if
the constant 4 = G, is chosen subject to the (21)—(26).

2.3. Comparison

Eq. (20) gives the eigenfunctions of the depth problem for the reflecting seabed
case. In order to compare the solutions for two different kind of boundary condi-
tions considered above, we use the fact that @ = 0 for the rigid seabed. Putting this
value in (20) we obtain

sin y1d

@(2) = 4 . - I
¢ €S yrd cos yrh + sin yrdsin yrh [sin y2zsin y>h 4 cos 2z cos 211
siny d
Pt h—
cos yath —d) [cos ya(h — z)],

which agrees with (13) of Boyles’ model of rigid seabed.

3. Inhomogeneous layered ocean model

In this section we consider the inhomogeneous layered ocean in which the upper
layer has no significant variation in the physical properties but the lower layer has
depth dependent properties. This results in the refractive index and hence the velo-
city to be depending on depth. We use the perturbation technique (Titchmarsh [9])
to find the eigenvalues and the eigenfunctions in case of the two sets of boundary
conditions discussed in the previous section.

Since we are considering the problem of an ocean consisting of two layers boun-
ded by a pressure-release surface above and a rigid or reflecting bottom below, it is
convenient to assume

[ ¢Winlayer 1, thatis, 0<z<d
| P inlayer2, thatis, d<z<h

Due to the inhomogeneous layer the depth equation is now assumed to be the per-
turbed equation

1

d'w ;
=t (1 + es)V = 4,0, (27)

where s(z) determines the depth dependent inhomogeneity. If s(z) = 0 the problem
reduces to that of homogeneous layered ocean discussed above. Following Titch-
marsh [9] we assume

V=Y, + ¥, +82II/2-|— ...... (28)
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A=lo+ el + 82/12 + e (29)
Substituting (28) and (29) in Eq. (27) we get
Wy 4 W) 4+ &2y oo + k(1 + es(2))(Wo + eWy + Wy + -+ - )
= (ho + ek R P ) (¥ + e Wy )
Comparing coefficient of like powers on both sides, we obtain the unperturbed equation
- + kl Yy = AoV, (30)
dz

The higher powers of ¢ give us

4wy, :
S KW + 5@ W) = Ao Wi + /1 Yo (31)
and
2 )
7 + kz(lIIZm + S(Z)\-IJ]M) = ;Lqujzm + }vlm\ljlm + /12m¢0’ (32)

and so on. Multiplying Eq. (31) by taking an inner product with ¥, we get
("Ijl/m7 \I'[Om) + <k25(2)qj0m, "IJ0m> + k2<\p1m, qum)
- )L0<\Illm,“p0m) + /11(\1"0771,‘;’0111)- (33)

Since the set of eigenfunctions of the depth-equation is complete (Boyles [2]), we
may assume the expansion Wy, = > po | othm Wok-

Using this expansion, properties of the inner product and the orthonormality of
the unperturbed eigenfunctions we obtain

Am = (k2s(z)lp()m, lIJ0m>-

Since we are considering the problem of an ocean consisting of two homogeneous
layers bounded by a pressure-release surface above and a rigid/reflecting bottom
below, we may use the un-perturbed solution for the respective eigenvalues and
eigenfunctions presented in Section (2) to obtain

0m Om 0m

h d h
Jm = k2J s()W2 dz = k2J s(z)W2 dz + k2J s(z)W2 dz.
0 0 d

Since s(z) = 0 in first layer we get AN — 0 while

Im

1m Om

h
- k2J s(2)W2 dz. (35)
d
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In order to find /L(zzni multiply Eq. (32) by ¥, and integrate from 0 to s we get

d h
Do = J (= A + K25(2)) Wi dz + J (—21m + K35(2)) Wimpfad=
0 d

or

h
P J ( O 4R v(z)) W12 dz, (36)
d

where \Ijlm - Z/ 105171]"110m
In order to obtain W¥,,, we multiply (31) by ¥, and integrate from 0 to / to obtain

2

h
Omn = —J S(Z)\If()m\lfondz, m 7é n. (37)
/lm - j-n 0

It follows that

k2
o = 0 a(z)J S b dz. m # . (38)

Thus the perturbed eigenfunctions are given as a power series in € having the
unperturbed ones as the leading entry as follows

U, (2) = You(2) + eVim@) 4+ oo

where the unperturbed eigenfunctions W, are given by Eqgs. (13) or (20), depending
upon the boundary condition at the seabed and

00 2
Win(2) = Z(ﬁj SO <2>dz)¢;2>. (39)

J=1 \"0m — o)

4. Numerical examples
4.1. Rigid boundary conditions

Example 1. The first example has a linear perturbation on the index of refraction
given by s(z) = (d — z). The first and second corrections to the eigenvalues in case of
the rigid seabed is obtained from (35) by substituting unperturbed eigenfunctions
given by (13) This gives

(40)

2 2 2
=2 ( d— g an - S b =d) d))

Vz Vz

where

B sin” y»d
T coslyy(h—d)’
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When /i = d, we find that
90
which agrees with Duston, Verma and Wood [6] in case of one layer. We also note

that if we put d = 0, then their solution can be recovered from ours.
Second correction of eigenvalue is obtained numerically as shown in (Table 1):

Table 1
(2)
m ;‘2m
1 —0.0002
2 0.1182
3 0.1208
4 0.0962
5 0.1138
6 0.0871
7 0.0221
m=3
0 T T T T T
200 ;\ _
400 B
600 - S .
800 1
T
1000 - T s
1200 -
1400 1 1 1 | Il 1 1 { 1
-1000 -800 -600 -400 -200 0 200 400 600 800 1000

Perturbed Eigenfunctions(Linear Variation)

Fig. 2. Linearly perturbed eigenfunctions: Rigid seabed.
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Table 2

2 52
m }(w): /“(Zrl)l
1 0.0102 0.2508
2 0.0077 0.2623
3 0.0062 0.2342
4 0.0050 0.2015
5 0.0029 0.1898
6 0.0029 0.1774
7 0.0022 0.1691

The perturbed eigenfunctions in the case of a rigid seabed are presented in a graph
(Fig. 2) for the following values:

e=20.004, h=1300m, d=750m, c¢; = 1500 T, a=1495% and frequency
= 60 Hz.

Example 2. The second example is an idealized model of a symmetrical channel with

s(z) = —2cos 5.

m=1 m=3 m=2

200 T

600 |- 7 1
800 - e :
1000 |- e = 1

1200 - e o .

1400 I I I | i
-1 -05 0 0.5 1 1.5 2

Perturbed Eigenfunctions(Symmetric Channel)

Fig. 3. Symmetric channel: Rigid seabed.
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The solution can be written in the form

(1 — T)(M(27* + 16d*y?) — N — (=7 + 164*y?))
(cos? yo(—h + d) (=72 + 16dy3)

D
A7 =

where M =siniw?, N =cos(2dy, — 2y,h) and T = cos? yod. When h = d, we find

that

,2) (sin yod)(3mr — 1)
T (e
(=72 4 16d°y3)

First and second corrections are obtained numerically and are shown in (Table
2):

The perturbed eigenfunctions are presented in a graph (Fig. 3) for the following
values:

£=0.004, n =1300m, d = 750m, ¢; = 15007, c; = 1495 %, ¢» = 1495 T and freq-
uency = 60 Hz.

200

400 -

600

800

1000 -

1200 -

1400 ] 1 ! I |
-80 -60 -40 -20 0 20 40 60 80

Perturbed Eigenfunctions(Reflecting Seabed)

Fig. 4. Perturbed eigenfunctions.
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4.2. Impedance boundary conditions

Example 3. Let us consider the linear perturbation on the index of refraction given
by

s(z) = (d — z) for the reflecting type seabed satisfying the impedance boundary
conditions. We present the first three perturbed eigenfunctions in this case in a
graphical form in Fig. (4).

5. Conclusion

We have considered the effects of depth dependent density on the eigenfunctions
and eigenvalues of the depth equation resulting from the Helmets equation satisfied
by the acoustic pressure in a layered ocean of finite depth. In addition to the more
convenient boundary condition assuming the seabed to be rigid, a more general
boundary condition, namely the reflecting type seabed condition has been con-
sidered. It has been shown that the eigenvalues and eigenfunctions of the depth
equation for the rigid seabed can be recovered from those for this general boundary
conditions as a special case.

We have used the perturbation method to obtain the eigenvalues and eigenfunc-
tions of the inhomogencous layered model in which the lower layer is assumed to
have depth dependent density and therefore the wave number. In Section (4), we
have computed the eigenvalues and plotted eigenfunctions in cases of interest using
both the boundary conditions at seabed. The first example presented in Section (4) is
that of a linear dependence of the wave number on the depth. In this case the first
correction in the eigenvalues is not significant and the eigenmodes remain close to
the ones in the unperturbed case. However, in the second example, which is that of a
symmetric channel, the effect of the perturbation is more significant. Fig. (3) shows
the first three eigen functions in this case. Fig. (4) shows the perturbed eigen func-
tions in the case of a linear perturbation in the wave number. The second and the
third mode is seen to become less significant because of the impedance or reflecting
boundary condition at the seabed which results in reflection of only a part of the
energy at the bottom.
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