Section 9.1

We assume that we have parametric form of a smooth curve C given by
$r(t)=x(t) \underline{i}+y(t) \underline{j}+z(t) \underline{k}$
$=\langle x(t), y(t), z(t)\rangle$
$a \leq t \leq b$.
If the equation is given in a non-parametric form then we can put it in a suitable parametric form.

Differentiation: $\underline{r}^{\prime}(t)=\left\langle\frac{d x}{d t}, \frac{d y}{d t}, \frac{d z}{d t}\right\rangle$
Del Operator: $\underline{\nabla}=\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right\rangle$
We use this operator to define three operations
Gradient: Gradient of a scalar function $f(x, y, z)$ is defined as $\operatorname{grad} f=\underline{\nabla f}=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right\rangle$.

Divergence: Divergence of a vector field is a scalar function defined as

$$
\operatorname{div} \underline{F}=\underline{\nabla} \cdot \underline{F}=\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z} .
$$

Curl: The curl of a vector field is given by

$\operatorname{curl} \underline{F}=\underline{\nabla} \times \underline{F}=\left[\begin{array}{ccc}\frac{i}{\partial} & \frac{j}{\partial} & \frac{k}{\partial} \\ \frac{\partial x}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_{1} & F_{2} & F_{3}\end{array}\right]$
A vector field \underline{F} is called IRROTATIONAL if curl $\underline{F}=0$.

