King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

Math 102 Exam I T-131

Saturday 05/10/2013 Net Time Allowed: 120 minutes

MASTER VERSION

- 1. If f is an integrable function and $\int_{1}^{3} (2 f(t)) dt = \int_{3}^{5} (t + f(t)) dt, \text{ then } \int_{1}^{5} f(t) dt =$
 - (a) -4
 - (b) -2
 - (c) -6
 - (d) 6
 - (e) 8

- 2. If g is a continuous function such that $\int_0^{2x} e^{t/2} g(t) dt = x e^x, \text{ then } g(4) =$
 - (a) $\frac{3}{2}$
 - (b) $\frac{5}{2}$
 - (c) 3
 - (d) 5
 - (e) $\frac{7}{2}$

- 3. The area of the surface obtained by rotating the curve $y = \sqrt{x}$, $4 \le x \le 9$ about the x-axis is
 - (a) $\frac{\pi}{6} (37\sqrt{37} 17\sqrt{17})$
 - (b) $\frac{\pi}{6} (37\sqrt{37} 17)$
 - (c) $\frac{\pi}{6} (37\sqrt{37} \sqrt{17})$
 - (d) $\frac{\pi}{6} (37 17\sqrt{17})$
 - (e) $\frac{\pi}{6} (\sqrt{37} 17\sqrt{17})$

- 4. The length of the curve $y = \int_0^x \sqrt{\cos 2t} \, dt$ from x = 0 to $x = \frac{\pi}{4}$ is
 - (a) 1
 - (b) 2
 - (c) 3
 - (d) 4
 - $(e) \quad 5$

- 5. If the average value of the function $f(x) = x^2 + 1$ on the interval [-1, b] is equal to 2, then b =
 - (a) 2
 - (b) 3
 - (c) 4
 - (d) 1
 - (e) 0

- 6. The area of the surface generated by rotating the curve $x = \sqrt{a^2 y^2}$, $0 \le y \le a/2$, about the y-axis is
 - (a) πa^2
 - (b) $\frac{\pi a^3}{3}$
 - (c) πa
 - (d) $3\pi a$
 - (e) $2 \pi a$.

- 7. If y = f(x) is the solution of the initial-value problem $\frac{dy}{dx} = \sec 2x \tan 2x$, $y\left(\frac{\pi}{6}\right) = 3$, then y(0) =
 - (a) $\frac{5}{2}$
 - (b) $\frac{7}{2}$
 - (c) $\frac{9}{2}$
 - (d) $\frac{11}{2}$
 - (e) $\frac{13}{2}$

- 8. The base of a solid is bounded by the curves $y = x^2, y = 0$ and x = 1. If the cross-sections perpendicular to the x-axis are semi-circles, then the volume of the solid is
 - (a) $\frac{\pi}{40}$
 - (b) $\frac{\pi}{5}$
 - (c) $\frac{\pi}{6}$
 - (d) $\frac{1}{10}$
 - (e) $\frac{1}{5}$

- 9. The region bounded by the curve of $y = \sqrt[3]{x}$ and the lines y = 0 and x = 8 is revolved about the x-axis. The volume of the solid generated is
 - (a) $\frac{96}{5}\pi$
 - (b) π
 - (c) $\frac{92}{3}\pi$
 - (d) 8π
 - (e) $\frac{32}{5}\pi$

- 10. The region bounded by the curve $y = x^3$ and the line y = 4x in the first quadrant is revolved about the line y = 8. The volume of the solid generated is given by
 - (a) $\pi \int_0^2 (x^5 16x^3 16x^2 + 64x) dx$
 - (b) $\pi \int_0^2 (9 16x^2 + 8x^4 x^6) dx$
 - (c) $\pi \int_0^2 (9 x^6 6x^3 + 16x^2 24x) dx$
 - (d) $\pi \int_0^2 (9 + 16x^2 8x^4 + x^6) dx$
 - (e) $\pi \int_0^2 (x^6 12x^3 24x^2 + 16x) dx$

- 11. The area enclosed by the line y = x 1 and the parabola $y^2 = 2x + 6$ is equal to
 - (a) 18
 - (b) 16
 - (c) 14
 - (d) 12
 - (e) 10

- 12. The volume of the solid generated by rotating the region bounded by the curves $y = x^2$ and $x = y^2$ about the line x = 2 is given by
 - (a) $2\pi \int_0^1 (2-x)(\sqrt{x}-x^2) dx$
 - (b) $2\pi \int_0^1 (2+x)(x^2-x) dx$
 - (c) $2\pi \int_0^1 (x-2)(x^2-x^4) dx$
 - (d) $2\pi \int_0^1 (x-2)(x^2+x^4) dx$
 - (e) $2\pi \int_0^1 (x-x^4) dx$

- 13. By interpreting the integral $\int_{-2}^{2} (|x| + \sqrt{4 x^2}) dx$ in terms of areas, its value is equal to
 - (a) $4 + 2\pi$
 - (b) $2 + \pi$
 - (c) $4 + \pi$
 - (d) $3 + 2\pi$
 - (e) $3 + \pi$

- 14. $\int 60 \, x^7 \sqrt{x^4 + 1} \, dx =$
 - (a) $6(x^4+1)^{5/2}-10(x^4+1)^{3/2}+C$
 - (b) $5x^8(x^4+1)^{3/2}+C$
 - (c) $40(x^4+1)^{5/2} 24(x^4+1)^{3/2} + C$
 - (d) $\frac{15}{2}x^8 + 24(x^4+1)^{5/2} + C$
 - (e) $30(x^4+1)^{3/2}-15(x^4+1)^{5/2}+C$

$$15. \quad \int \frac{x-1}{\sqrt{1-x^2}} \, dx =$$

(a)
$$-\sqrt{1-x^2} - \sin^{-1} x + C$$

(b)
$$3\sqrt{1-x^2} - \sin^{-1}x + C$$

(c)
$$-2\sqrt{1-x^2} + \sin^{-1}x + C$$

(d)
$$2\sqrt{1-x^2} - \sin^{-1}x + C$$

(e)
$$-(1-x^2) - \sin^{-1}x + C$$

16.
$$\int \frac{e^{2t} \tan(e^t) - 1}{e^t} dt =$$

(a)
$$\ln|\sec e^t| + e^{-t} + C$$

(b)
$$\ln|\sec e^t| - e^{-t} + C$$

(c)
$$\ln|\sec e^{-t}| - e^{-t} + C$$

(d)
$$\ln|\sec e^t| + e^t + C$$

(e)
$$\ln|\sec e^{-t}| + e^{-t} + C$$

17.
$$\int_{-1}^{0} (x+2)(x+1)^{99} dx =$$

- (a) $\frac{201}{10100}$
- (b) $\frac{101}{102}$
- (c) $\frac{102}{10100}$
- (d) $\frac{301}{101}$
- (e) $\frac{101}{20100}$

18.
$$\int_0^{\frac{\pi}{2}} \frac{\sin(2x)}{1 + \sin^2 x} \ln(1 + \sin^2 x) \, dx =$$

- (a) $\frac{1}{2} (\ln 2)^2$
- (b) $\frac{1}{2} \ln 2$
- (c) $(\ln 2)^2$
- (d) $\frac{1}{2}$
- (e) $\frac{1}{2} + \ln 2$

- 19. The area of the region R bounded by the graphs $y=x,\,y=\frac{1}{x},\,3y-2x+5=0$ and above the line y=-x is given by
 - (a) $\ln 3 + \frac{5}{3}$
 - (b) $\ln 2 + \frac{1}{3}$
 - (c) $\ln 3 + 2$
 - (d) $\ln 2 + 3$
 - (e) $\ln 5 + 4$

- 20. The $\lim_{x \to 0} \left(\frac{1}{x \sin x} \int_0^x t \sin t \, dt \right)$
 - (a) is equal to 2
 - (b) is equal to 0
 - (c) is equal to π
 - (d) is equal to $-\pi$
 - (e) does not exist