$\begin{array}{c} \text{Math 102} \\ \text{Exam I} \\ \text{Term 162} \\ \text{Wednesday } 15/3/2017 \end{array}$

EXAM COVER

Number of versions: 4 Number of questions: 20 Number of Answers: 5 per question

 $\begin{array}{c} {\rm Math\ 102} \\ {\rm Exam\ I} \\ {\rm Term\ 162} \\ {\rm Wednesday\ 15/3/2017} \\ {\rm Net\ Time\ Allowed:\ 120\ minutes} \end{array}$

MASTER VERSION

- 1. Using **three** rectangles and **midpoints**, the area under the graph of $f(x) = 3x x^2$ from x = 0 to x = 3 is approximately equal to
 - (a) $\frac{19}{4}$
 - (b) $\frac{17}{4}$
 - (c) $\frac{17}{2}$
 - (d) 9
 - (e) $\frac{8}{3}$

- $2. \qquad \int \left(\frac{1-x}{x}\right)^2 \, dx =$
 - (a) $-\frac{1}{x} 2 \ln|x| + x + C$
 - (b) $-\frac{1}{3} \left(\frac{1-x}{x} \right)^3 + C$
 - (c) $-\frac{1}{x} + x + C$
 - (d) $\frac{2}{x} + \ln|x| x + C$
 - (e) $\frac{1}{x^2} + \frac{2}{x} + C$

$$3. \qquad \int \frac{6}{x(\ln x)^4} \, dx =$$

(a)
$$\frac{-2}{(\ln x)^3} + C$$

(b)
$$\frac{-3}{(\ln x)^3} + C$$

(c)
$$\frac{x}{(\ln x)^2} + C$$

(d)
$$\frac{1}{3(\ln x)^3} + C$$

(e)
$$\frac{6}{(\ln x)^2} + C$$

4.
$$\int_0^1 x(\sqrt[3]{x} + 3x^2 \sqrt{x}) \, dx =$$

- (a) $\frac{23}{21}$
- (b) $\frac{21}{5}$
- (c) $\frac{1}{2}$
- (d) $\frac{3}{7}$
- (e) $\frac{8}{5}$

5.
$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{n} \cos \left(1 + \frac{i}{n}\right)^2 =$$

- (a) $\int_{1}^{2} \cos(x^2) dx$
- (b) $\int_{1}^{2} \cos(1+x^2) dx$
- (c) $\int_{1}^{2} \cos^2 x \, dx$
- (d) $\int_0^1 \cos(x^2) \, dx$
- (e) $\int_0^1 \cos(1+x^2) dx$

- 6. The **volume** of the solid obtained by rotating the region bounded by the curves $y=2\sqrt{x},\,y=0,\,x=2$ about the x-axis is
 - (a) 8π
 - (b) $\frac{5\pi}{2}$
 - (c) 3π
 - (d) 6π
 - (e) $\frac{\pi}{2}$

7. If
$$F(x) = \int_{x}^{x^2} e^{t^2} dt$$
 then $F'(x) =$

- (a) $2x e^{x^4} e^{x^2}$
- (b) $e^{x^4} e^{x^2}$
- (c) $e^{x^4-x^2}$
- (d) $2e^{x^2} e^x$
- (e) $2e^{x^4} xe^{x^2}$

8.
$$\int \frac{\tan \theta}{\sec \theta (\sec \theta - \cos \theta)} d\theta =$$

- (a) $\ln|\sin\theta| + C$
- (b) $\ln|\sec\theta \cos\theta| + C$
- (c) $\sin \theta + \tan \theta + C$
- (d) $-\tan\theta + \ln|\sin\theta| + C$
- (e) $\cot \theta + \cos \theta + C$

9. An equation for the **tangent line** to the curve $y = \int_x^{\sqrt{3}} \sqrt{1+t^2} dt$ at the point with x-coordinate $\sqrt{3}$ is given by

(a)
$$y = -2x + 2\sqrt{3}$$

(b)
$$y = 2x - 2\sqrt{3}$$

(c)
$$y = \sqrt{3}x - 3$$

(d)
$$y = 3x - 3\sqrt{3}$$

(e)
$$y = -\sqrt{3}x + 2\sqrt{3}$$

- 10. If $f(x) = \begin{cases} 2 + \sqrt{4 x^2} & \text{if } x < 2 \\ |x 4| & \text{if } x \ge 2 \end{cases}$, then $\int_{-2}^{4} f(x) dx =$
 - (a) $2\pi + 10$
 - (b) $\pi 6$
 - (c) $2\pi + 2$
 - (d) $\pi 2$
 - (e) $6 + \frac{\pi}{2}$

- 11. The **area** of the region enclosed by the curves y = |x| and $y = x^2 2$ is
 - (a) $\frac{20}{3}$
 - (b) $\frac{15}{16}$
 - (c) $\frac{25}{17}$
 - (d) $\frac{11}{5}$
 - (e) $\frac{17}{12}$

12. Using n subintervals with **right endpoints**, we get

$$\int_{2}^{5} (x^2 - 4) \, dx =$$

- (a) $\lim_{n \to \infty} \left[\frac{18(n+1)}{n} + \frac{9(n+1)(2n+1)}{2n^2} \right]$
- (b) $\lim_{n \to \infty} \left[\frac{9(n+1)(2n+1)}{n^2} 4n \right]$
- (c) $\lim_{n \to \infty} \left[\frac{9(n+1)}{2n} \frac{9(n+1)(2n+1)}{2n^2} \right]$
- (d) $\lim_{n \to \infty} \left[\frac{12(n+1)}{n} + \frac{15(n+1)(2n+1)}{2n^2} \right]$
- (e) $\lim_{n \to \infty} \left[\frac{18(n+1)}{n} + \frac{9(n+1)(2n+1)}{n^2} \right]$

13. The **volume** of the solid obtained by rotating the region bounded by the curves y = x and $y = x^2$ about the line x = -1 is given by

(a)
$$\pi \int_0^1 [(1+\sqrt{y})^2 - (1+y)^2] dy$$

(b)
$$\pi \int_0^1 [y - (1+y)^2] dy$$

(c)
$$\pi \int_0^1 y - y^2 dy$$

(d)
$$\pi \int_0^1 [(x^2+1)^2-(x+1)^2] dx$$

(e)
$$\pi \int_0^1 (\sqrt{y} - y) dy$$

14.
$$\int_{-1}^{1} \frac{\sin^3 t}{2 + \sin^2 t} \, dt =$$

- (a) 0
- (b) ln 2
- (c) $2 \ln(2 + \sin 1)$
- (d) $-\ln(\sin 1)$
- (e) $\ln \left(\frac{2 + \sin 1}{2 \sin 1} \right)$

15. If
$$\int_{-5}^{7} f(x)dx = -17$$
, $\int_{-5}^{11} f(x) dx = 32$, and $\int_{8}^{7} f(x) dx = 5$, then $\int_{11}^{8} f(x) dx = 6$

- (a) -54
- (b) 19
- (c) -60
- (d) 44
- (e) -50

16. The velocity (in m/s) of a particle moving along a line is given by

$$v(t) = t^2 - 2$$

The **distance** traveled by the particle during the time interval $0 \le t \le 2$ is

- (a) $\frac{8\sqrt{2}-4}{3}m$
- (b) $\frac{4\sqrt{2}+2}{3}m$
- (c) $\frac{4+\sqrt{2}}{3}m$
- (d) $\frac{8-2\sqrt{2}}{3}m$
- (e) $\frac{5-3\sqrt{2}}{3}m$

17. If f is a continuous function and

$$2 \le f(x) \le 5 \quad \text{for} \quad 3 \le x \le 9,$$

then which one of the following statements is in general **FALSE**:

(a)
$$\int_{3}^{9} (1 - 2|f(x)|) dx \ge -10$$

(b)
$$\int_3^9 (3 - f(x)) dx \ge -12$$

(c)
$$\int_{3}^{9} |f(x)| dx \ge 12$$

(d)
$$\int_3^9 -2 f(x) dx \le -24$$

(e)
$$\int_{3}^{9} (f(x))^2 dx \ge 24$$

18.
$$\int x^3 \sqrt{x^2 + 1} \, dx =$$

(a)
$$\frac{1}{5}(x^2+1)^{3/2}\left(x^2-\frac{2}{3}\right)+C$$

(b)
$$\frac{1}{3}(x^2+1)^{3/2}\left(x^2-\frac{3}{5}\right)+C$$

(c)
$$\frac{1}{5}(x^2+1)^5 + \frac{1}{3}(x^2+1)^3 + C$$

(d)
$$\frac{1}{5}(x^2+1)^{3/2}\left(x^2-\frac{4}{3}\right)+C$$

(e)
$$\frac{1}{3}(x^2+1)^{3/2}\left(\frac{3}{5}x^2-3\right)+C$$

- 19. If $f(x) = x^{-1} \left[\cos \left(\frac{\pi}{4} \ln x \right) \right]^{-2} \left[4 + 5 \tan \left(\frac{\pi}{4} \ln x \right) \right]^{-1/2}$, then $\int_{1}^{e} f(x) dx =$
 - (a) $\frac{8}{5\pi}$
 - (b) 4
 - (c) $\frac{6}{5\pi}$
 - (d) 4π
 - (e) $\frac{30}{\pi}$

- 20. The base of a solid is the triangular region with vertices (0,0), (1,0), and (0,1). If the cross sections of the solid perpendicular to the x-axis are **semi-circles**, then the **volume** of the solid is
 - (a) $\frac{\pi}{24}$
 - (b) $\frac{\pi}{12}$
 - (c) $\frac{\pi}{6}$
 - (d) $\frac{\pi}{4}$
 - (e) $\frac{\pi}{3}$

CODE 001

Math 102 Exam I Term 162

CODE 001

Wednesday 15/3/2017 Net Time Allowed: 120 minutes

Name:		
ID:	Sec:	

Check that this exam has 20 questions.

Important Instructions:

- 1. All types of calculators, pagers or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

$$1. \qquad \int \left(\frac{1-x}{x}\right)^2 dx =$$

(a)
$$-\frac{1}{x} + x + C$$

(b)
$$\frac{2}{x} + \ln|x| - x + C$$

(c)
$$-\frac{1}{3}\left(\frac{1-x}{x}\right)^3 + C$$

(d)
$$-\frac{1}{x} - 2 \ln|x| + x + C$$

(e)
$$\frac{1}{x^2} + \frac{2}{x} + C$$

2.
$$\int_0^1 x(\sqrt[3]{x} + 3x^2 \sqrt{x}) dx =$$

- (a) $\frac{21}{5}$
- (b) $\frac{3}{7}$
- (c) $\frac{8}{5}$
- (d) $\frac{1}{2}$
- (e) $\frac{23}{21}$

- 3. Using **three** rectangles and **midpoints**, the area under the graph of $f(x) = 3x x^2$ from x = 0 to x = 3 is approximately equal to
 - (a) $\frac{8}{3}$
 - (b) $\frac{17}{2}$
 - (c) 9
 - (d) $\frac{19}{4}$
 - (e) $\frac{17}{4}$

- 4. $\lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{n} \cos \left(1 + \frac{i}{n}\right)^2 =$
 - (a) $\int_0^1 \cos(1+x^2) dx$
 - (b) $\int_0^1 \cos(x^2) dx$
 - (c) $\int_1^2 \cos^2 x \, dx$
 - (d) $\int_{1}^{2} \cos(1+x^2) dx$
 - (e) $\int_{1}^{2} \cos(x^2) dx$

- $5. \qquad \int \frac{6}{x(\ln x)^4} \, dx =$
 - (a) $\frac{-2}{(\ln x)^3} + C$
 - (b) $\frac{-3}{(\ln x)^3} + C$
 - $(c) \quad \frac{6}{(\ln x)^2} + C$
 - (d) $\frac{x}{(\ln x)^2} + C$
 - (e) $\frac{1}{3(\ln x)^3} + C$

- 6. The **volume** of the solid obtained by rotating the region bounded by the curves $y = 2\sqrt{x}$, y = 0, x = 2 about the x-axis is
 - (a) $\frac{\pi}{2}$
 - (b) 6π
 - (c) $\frac{5\pi}{2}$
 - (d) 3π
 - (e) 8π

7.
$$\int \frac{\tan \theta}{\sec \theta (\sec \theta - \cos \theta)} d\theta =$$

- (a) $\sin \theta + \tan \theta + C$
- (b) $\cot \theta + \cos \theta + C$
- (c) $\ln|\sec\theta \cos\theta| + C$
- (d) $\ln|\sin\theta| + C$
- (e) $-\tan \theta + \ln |\sin \theta| + C$

8. If
$$F(x) = \int_{x}^{x^2} e^{t^2} dt$$
 then $F'(x) =$

- (a) $e^{x^4} e^{x^2}$
- (b) $2e^{x^4} xe^{x^2}$
- (c) $2e^{x^2} e^x$
- (d) $e^{x^4-x^2}$
- (e) $2x e^{x^4} e^{x^2}$

9. An equation for the **tangent line** to the curve $y = \int_x^{\sqrt{3}} \sqrt{1+t^2} dt$ at the point with x-coordinate $\sqrt{3}$ is given by

(a)
$$y = -\sqrt{3}x + 2\sqrt{3}$$

(b)
$$y = 3x - 3\sqrt{3}$$

(c)
$$y = -2x + 2\sqrt{3}$$

(d)
$$y = \sqrt{3}x - 3$$

(e)
$$y = 2x - 2\sqrt{3}$$

10. If $f(x) = \begin{cases} 2 + \sqrt{4 - x^2} & \text{if } x < 2 \\ |x - 4| & \text{if } x \ge 2 \end{cases}$, then $\int_{-2}^{4} f(x) dx =$

(a)
$$\pi - 2$$

(b)
$$2\pi + 2$$

(c)
$$2\pi + 10$$

(d)
$$6 + \frac{\pi}{2}$$

(e)
$$\pi - 6$$

11. Using n subintervals with **right endpoints**, we get

$$\int_{2}^{5} (x^{2} - 4) \, dx =$$

(a)
$$\lim_{n \to \infty} \left[\frac{18(n+1)}{n} + \frac{9(n+1)(2n+1)}{2n^2} \right]$$

(b)
$$\lim_{n \to \infty} \left[\frac{9(n+1)(2n+1)}{n^2} - 4n \right]$$

(c)
$$\lim_{n \to \infty} \left[\frac{18(n+1)}{n} + \frac{9(n+1)(2n+1)}{n^2} \right]$$

(d)
$$\lim_{n \to \infty} \left[\frac{12(n+1)}{n} + \frac{15(n+1)(2n+1)}{2n^2} \right]$$

(e)
$$\lim_{n \to \infty} \left[\frac{9(n+1)}{2n} - \frac{9(n+1)(2n+1)}{2n^2} \right]$$

12. The **volume** of the solid obtained by rotating the region bounded by the curves y = x and $y = x^2$ about the line x = -1 is given by

(a)
$$\pi \int_0^1 [(x^2+1)^2-(x+1)^2] dx$$

(b)
$$\pi \int_0^1 (\sqrt{y} - y) \, dy$$

(c)
$$\pi \int_0^1 [y - (1+y)^2] dy$$

(d)
$$\pi \int_0^1 [(1+\sqrt{y})^2 - (1+y)^2] dy$$

(e)
$$\pi \int_0^1 y - y^2 \, dy$$

13.
$$\int_{-1}^{1} \frac{\sin^3 t}{2 + \sin^2 t} \, dt =$$

- (a) $-\ln(\sin 1)$
- (b) $\ln \left(\frac{2 + \sin 1}{2 \sin 1} \right)$
- (c) $2 \ln(2 + \sin 1)$
- (d) 0
- (e) ln 2

- 14. The **area** of the region enclosed by the curves y = |x| and $y = x^2 2$ is
 - (a) $\frac{15}{16}$
 - (b) $\frac{17}{12}$
 - (c) $\frac{11}{5}$
 - (d) $\frac{25}{17}$
 - (e) $\frac{20}{3}$

15. If f is a continuous function and

$$2 \le f(x) \le 5 \quad \text{for} \quad 3 \le x \le 9,$$

then which one of the following statements is in general **FALSE**:

(a)
$$\int_3^9 (3 - f(x)) dx \ge -12$$

(b)
$$\int_{3}^{9} (f(x))^{2} dx \ge 24$$

(c)
$$\int_3^9 (1 - 2|f(x)|) dx \ge -10$$

(d)
$$\int_{3}^{9} |f(x)| dx \ge 12$$

(e)
$$\int_3^9 -2 f(x) dx \le -24$$

16. If
$$\int_{-5}^{7} f(x)dx = -17$$
, $\int_{-5}^{11} f(x) dx = 32$, and $\int_{8}^{7} f(x) dx = 5$, then $\int_{11}^{8} f(x) dx = 32$

- (a) -54
- (b) 19
- (c) -60
- (d) 44
- (e) -50

17. The velocity (in m/s) of a particle moving along a line is given by

$$v(t) = t^2 - 2$$

The **distance** traveled by the particle during the time interval $0 \le t \le 2$ is

- (a) $\frac{4+\sqrt{2}}{3}m$
- (b) $\frac{4\sqrt{2}+2}{3}m$
- (c) $\frac{8\sqrt{2}-4}{3}m$
- (d) $\frac{5-3\sqrt{2}}{3}m$
- (e) $\frac{8-2\sqrt{2}}{3}m$

- 18. If $f(x) = x^{-1} \left[\cos \left(\frac{\pi}{4} \ln x \right) \right]^{-2} \left[4 + 5 \tan \left(\frac{\pi}{4} \ln x \right) \right]^{-1/2}$, then $\int_{1}^{e} f(x) dx =$
 - (a) $\frac{6}{5\pi}$
 - (b) $\frac{8}{5\pi}$
 - (c) 4π
 - (d) $\frac{30}{\pi}$
 - (e) 4

$$19. \qquad \int x^3 \sqrt{x^2 + 1} \, dx =$$

- (a) $\frac{1}{5}(x^2+1)^5 + \frac{1}{3}(x^2+1)^3 + C$
- (b) $\frac{1}{5}(x^2+1)^{3/2}\left(x^2-\frac{4}{3}\right)+C$
- (c) $\frac{1}{5}(x^2+1)^{3/2}\left(x^2-\frac{2}{3}\right)+C$
- (d) $\frac{1}{3}(x^2+1)^{3/2}\left(x^2-\frac{3}{5}\right)+C$
- (e) $\frac{1}{3}(x^2+1)^{3/2}\left(\frac{3}{5}x^2-3\right)+C$

- 20. The base of a solid is the triangular region with vertices (0,0), (1,0), and (0,1). If the cross sections of the solid perpendicular to the x-axis are **semi-circles**, then the **volume** of the solid is
 - (a) $\frac{\pi}{12}$
 - (b) $\frac{\pi}{4}$
 - (c) $\frac{\pi}{6}$
 - (d) $\frac{\pi}{3}$
 - (e) $\frac{\pi}{24}$

1	a	b	С	d	е	f
2	a	b	С	d	е	f
3	a	b	c	d	е	f
4	a	b	С	d	е	f
5	a	b	С	d	е	f
6	a	b	С	d	е	f
7	a	b	С	d	е	f
8	a	b	С	d	е	f
9	a	b	С	d	е	f
10	a	b	$^{\mathrm{c}}$	d	е	f
11	a	b	c	d	е	f
12	a	b	\mathbf{c}	d	e	f
13	a	b	С	d	е	f
14	a	b	С	d	е	f
15	a	b	С	d	е	f
16	a	b	С	d	е	f
17	a	b	С	d	е	f
18	a	b	c	d	е	f
19	a	b	С	d	е	f
20	a	b	c	d	е	f
21	a	b	$^{\mathrm{c}}$	d	е	f
22	a	b	c	d	е	f
23	a	b	С	d	е	f
24	a	b	С	d	е	f
25	a	b	c	d	е	f
26	a	b	С	d	е	f
27	a	b	С	d	е	f
28	a	b	c	d	е	f
29	a	b	С	d	е	f
30	a	b	c	d	е	f
31	a	b	c	d	е	f
32	a	b	c	d	e	f
33	a	b	c	d	е	f
34	a	b	c	d	е	f
35	a	b	\mathbf{c}	d	e	f

36	a	b	С	d	е	f
37	a	b	С	d	е	f
38	a	b	С	d	е	f
39	a	b	С	d	е	f
40	a	b	С	d	е	f
41	a	b	С	d	е	f
42	a	b	c	d	е	f
43	a	b	c	d	e	f
44	a	b	С	d	е	f
45	a	b	\mathbf{c}	d	e	f
46	a	b	С	d	е	f
47	a	b	c	d	е	f
48	a	b	С	d	е	f
49	a	b	С	d	е	f
50	a	b	С	d	е	f
51	a	b	С	d	е	f
52	a	b	С	d	е	f
53	a	b	С	d	е	f
54	a	b	С	d	е	f
55	a	b	С	d	е	f
56	a	b	c	d	e	f
57	a	b	С	d	е	f
58	a	b	c	d	е	f
59	a	b	С	d	е	f
60	a	b	c	d	e	f
61	a	b	c	d	е	f
62	a	b	c	d	е	f
63	a	b	c	d	е	f
64	a	b	С	d	е	f
65	a	b	С	d	е	f
66	a	b	c	d	е	f
67	a	b	c	d	е	f
68	a	b	c	d	е	f
69	a	b	c	d	е	f
70	a	b	С	d	е	f

CODE 002

Math 102 Exam I Term 162 CODE 002

Wednesday 15/3/2017 Net Time Allowed: 120 minutes

Name:		
ID:	Sec:	

Check that this exam has 20 questions.

Important Instructions:

- 1. All types of calculators, pagers or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

- 1. Using **three** rectangles and **midpoints**, the area under the graph of $f(x) = 3x x^2$ from x = 0 to x = 3 is approximately equal to
 - (a) $\frac{8}{3}$
 - (b) 9
 - (c) $\frac{17}{2}$
 - (d) $\frac{19}{4}$
 - (e) $\frac{17}{4}$

- 2. The **volume** of the solid obtained by rotating the region bounded by the curves $y=2\sqrt{x},\,y=0,\,x=2$ about the x-axis is
 - (a) $\frac{5\pi}{2}$
 - (b) 6π
 - (c) 3π
 - (d) 8π
 - (e) $\frac{\pi}{2}$

3.
$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{n} \cos \left(1 + \frac{i}{n}\right)^2 =$$

- (a) $\int_0^1 \cos(x^2) \, dx$
- (b) $\int_{1}^{2} \cos(x^2) dx$
- (c) $\int_{1}^{2} \cos(1+x^2) dx$
- (d) $\int_0^1 \cos(1+x^2) dx$
- (e) $\int_{1}^{2} \cos^2 x \, dx$

4.
$$\int_0^1 x(\sqrt[3]{x} + 3x^2 \sqrt{x}) \, dx =$$

- (a) $\frac{23}{21}$
- (b) $\frac{8}{5}$
- (c) $\frac{21}{5}$
- (d) $\frac{3}{7}$
- (e) $\frac{1}{2}$

$$5. \qquad \int \left(\frac{1-x}{x}\right)^2 dx =$$

(a)
$$\frac{2}{x} + \ln|x| - x + C$$

(b)
$$\frac{1}{x^2} + \frac{2}{x} + C$$

(c)
$$-\frac{1}{3}\left(\frac{1-x}{x}\right)^3 + C$$

(d)
$$-\frac{1}{x} - 2 \ln|x| + x + C$$

(e)
$$-\frac{1}{x} + x + C$$

$$6. \qquad \int \frac{6}{x(\ln x)^4} \, dx =$$

(a)
$$\frac{x}{(\ln x)^2} + C$$

(b)
$$\frac{-2}{(\ln x)^3} + C$$

(c)
$$\frac{6}{(\ln x)^2} + C$$

$$(d) \quad \frac{-3}{(\ln x)^3} + C$$

(e)
$$\frac{1}{3(\ln x)^3} + C$$

7.
$$\int \frac{\tan \theta}{\sec \theta (\sec \theta - \cos \theta)} d\theta =$$

- (a) $\ln|\sin\theta| + C$
- (b) $-\tan \theta + \ln |\sin \theta| + C$
- (c) $\ln|\sec\theta \cos\theta| + C$
- (d) $\sin \theta + \tan \theta + C$
- (e) $\cot \theta + \cos \theta + C$

8. If
$$f(x) = \begin{cases} 2 + \sqrt{4 - x^2} & \text{if } x < 2 \\ |x - 4| & \text{if } x \ge 2 \end{cases}$$
, then $\int_{-2}^{4} f(x) dx =$

- (a) $\pi 2$
- (b) $\pi 6$
- (c) $6 + \frac{\pi}{2}$
- (d) $2\pi + 2$
- (e) $2\pi + 10$

- 9. An equation for the **tangent line** to the curve $y = \int_x^{\sqrt{3}} \sqrt{1+t^2} dt$ at the point with x-coordinate $\sqrt{3}$ is given by
 - (a) $y = 3x 3\sqrt{3}$
 - (b) $y = 2x 2\sqrt{3}$
 - (c) $y = -2x + 2\sqrt{3}$
 - (d) $y = \sqrt{3}x 3$
 - (e) $y = -\sqrt{3}x + 2\sqrt{3}$

- 10. If $F(x) = \int_{x}^{x^2} e^{t^2} dt$ then F'(x) =
 - (a) $2e^{x^4} xe^{x^2}$
 - (b) $2e^{x^2} e^x$
 - (c) $2x e^{x^4} e^{x^2}$
 - (d) $e^{x^4-x^2}$
 - (e) $e^{x^4} e^{x^2}$

- 11. The **area** of the region enclosed by the curves y = |x| and $y = x^2 2$ is
 - (a) $\frac{20}{3}$
 - (b) $\frac{11}{5}$
 - (c) $\frac{25}{17}$
 - (d) $\frac{15}{16}$
 - (e) $\frac{17}{12}$

12. Using n subintervals with **right endpoints**, we get

$$\int_{2}^{5} (x^2 - 4) \, dx =$$

(a)
$$\lim_{n \to \infty} \left[\frac{9(n+1)}{2n} - \frac{9(n+1)(2n+1)}{2n^2} \right]$$

(b)
$$\lim_{n \to \infty} \left[\frac{18(n+1)}{n} + \frac{9(n+1)(2n+1)}{2n^2} \right]$$

(c)
$$\lim_{n \to \infty} \left[\frac{12(n+1)}{n} + \frac{15(n+1)(2n+1)}{2n^2} \right]$$

(d)
$$\lim_{n \to \infty} \left[\frac{9(n+1)(2n+1)}{n^2} - 4n \right]$$

(e)
$$\lim_{n \to \infty} \left[\frac{18(n+1)}{n} + \frac{9(n+1)(2n+1)}{n^2} \right]$$

- 13. The **volume** of the solid obtained by rotating the region bounded by the curves y = x and $y = x^2$ about the line x = -1 is given by
 - (a) $\pi \int_0^1 [(1+\sqrt{y})^2 (1+y)^2] dy$
 - (b) $\pi \int_0^1 y y^2 \, dy$
 - (c) $\pi \int_0^1 [y (1+y)^2] dy$
 - (d) $\pi \int_0^1 [(x^2+1)^2-(x+1)^2] dx$
 - (e) $\pi \int_0^1 (\sqrt{y} y) dy$

- 14. $\int_{-1}^{1} \frac{\sin^3 t}{2 + \sin^2 t} \, dt =$
 - (a) $-\ln(\sin 1)$
 - (b) ln 2
 - (c) $\ln \left(\frac{2 + \sin 1}{2 \sin 1} \right)$
 - (d) $2 \ln(2 + \sin 1)$
 - (e) 0

- 15. The base of a solid is the triangular region with vertices (0,0), (1,0), and (0,1). If the cross sections of the solid perpendicular to the x-axis are **semi-circles**, then the **volume** of the solid is
 - (a) $\frac{\pi}{3}$
 - (b) $\frac{\pi}{12}$
 - (c) $\frac{\pi}{6}$
 - (d) $\frac{\pi}{24}$
 - (e) $\frac{\pi}{4}$

- 16. If $\int_{-5}^{7} f(x)dx = -17$, $\int_{-5}^{11} f(x) dx = 32$, and $\int_{8}^{7} f(x) dx = 5$, then $\int_{11}^{8} f(x) dx = 6$
 - (a) 19
 - (b) -60
 - (c) -50
 - (d) 44
 - (e) -54

$$17. \qquad \int x^3 \sqrt{x^2 + 1} \, dx =$$

(a)
$$\frac{1}{5}(x^2+1)^{3/2}\left(x^2-\frac{4}{3}\right)+C$$

(b)
$$\frac{1}{5}(x^2+1)^{3/2}\left(x^2-\frac{2}{3}\right)+C$$

(c)
$$\frac{1}{5}(x^2+1)^5 + \frac{1}{3}(x^2+1)^3 + C$$

(d)
$$\frac{1}{3}(x^2+1)^{3/2}\left(x^2-\frac{3}{5}\right)+C$$

(e)
$$\frac{1}{3}(x^2+1)^{3/2}\left(\frac{3}{5}x^2-3\right)+C$$

18. The velocity (in m/s) of a particle moving along a line is given by

$$v(t) = t^2 - 2$$

The **distance** traveled by the particle during the time interval $0 \le t \le 2$ is

(a)
$$\frac{8 - 2\sqrt{2}}{3} m$$

(b)
$$\frac{5-3\sqrt{2}}{3}m$$

(c)
$$\frac{4\sqrt{2}+2}{3}m$$

(d)
$$\frac{8\sqrt{2}-4}{3}m$$

(e)
$$\frac{4+\sqrt{2}}{3}m$$

- 19. If $f(x) = x^{-1} \left[\cos \left(\frac{\pi}{4} \ln x \right) \right]^{-2} \left[4 + 5 \tan \left(\frac{\pi}{4} \ln x \right) \right]^{-1/2}$, then $\int_{1}^{e} f(x) dx =$
 - (a) $\frac{30}{\pi}$
 - (b) 4π
 - (c) 4
 - (d) $\frac{6}{5\pi}$
 - (e) $\frac{8}{5\pi}$

20. If f is a continuous function and

$$2 < f(x) < 5$$
 for $3 < x < 9$,

then which one of the following statements is in general **FALSE**:

- (a) $\int_{3}^{9} |f(x)| dx \ge 12$
- (b) $\int_3^9 (f(x))^2 dx \ge 24$
- (c) $\int_3^9 -2 f(x) dx \le -24$
- (d) $\int_3^9 (1 2|f(x)|) dx \ge -10$
- (e) $\int_{3}^{9} (3 f(x)) dx \ge -12$

1	a	b	c	d	е	f
2	a	b	С	d	е	f
3	a	b	С	d	е	f
4	a	b	С	d	е	f
5	a	b	С	d	е	f
6	a	b	С	d	е	f
7	a	b	С	d	е	f
8	a	b	С	d	е	f
9	a	b	С	d	е	f
10	a	b	С	d	е	f
11	a	b	С	d	е	f
12	a	b	С	d	е	f
13	a	b	С	d	е	f
14	a	b	С	d	е	f
15	a	b	С	d	е	f
16	a	b	С	d	е	f
17	a	b	С	d	е	f
18	a	b	С	d	е	f
19	a	b	С	d	е	f
20	a	b	С	d	е	f
21	a	b	С	d	е	f
22	a	b	С	d	е	f
23	a	b	С	d	е	f
24	a	b	С	d	е	f
25	a	b	c	d	е	f
26	a	b	$^{\mathrm{c}}$	d	e	f
27	a	b	С	d	е	f
28	a	b	c	d	е	f
29	a	b	c	d	е	f
30	a	b	c	d	е	f
31	a	b	С	d	е	f
32	a	b	c	d	е	f
33	a	b	c	d	е	f
34	a	b	c	d	е	f
35	a	b	c	d	е	f

36	a	b	c	d	е	f
37	a	b	С	d	е	f
38	a	b	c	d	е	f
39	a	b	c	d	е	f
40	a	b	С	d	е	f
41	a	b	С	d	е	f
42	a	b	С	d	е	f
43	a	b	c	d	е	f
44	a	b	С	d	е	f
45	a	b	С	d	е	f
46	a	b	С	d	е	f
47	a	b	c	d	е	f
48	a	b	С	d	е	f
49	a	b	c	d	е	f
50	a	b	С	d	е	f
51	a	b	С	d	е	f
52	a	b	С	d	е	f
53	a	b	С	d	е	f
54	a	b	С	d	е	f
55	a	b	С	d	е	f
56	a	b	c	d	е	f
57	a	b	c	d	е	f
58	a	b	\mathbf{c}	d	е	f
59	a	b	С	d	е	f
60	a	b	c	d	е	f
61	a	b	С	d	е	f
62	a	b	С	d	е	f
63	a	b	С	d	е	f
64	a	b	c	d	е	f
65	a	b	С	d	е	f
66	a	b	c	d	е	f
67	a	b	c	d	е	f
68	a	b	c	d	е	f
69	a	b	c	d	е	f
70	a.	b	С	d	e	f

King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

CODE 003

Math 102 Exam I Term 162 CODE 003

Wednesday 15/3/2017 Net Time Allowed: 120 minutes

Name:		
ID:	Sec:	

Check that this exam has 20 questions.

Important Instructions:

- 1. All types of calculators, pagers or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

1.
$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{n} \cos \left(1 + \frac{i}{n}\right)^2 =$$

- (a) $\int_0^1 \cos(1+x^2) dx$
- (b) $\int_{1}^{2} \cos^2 x \, dx$
- (c) $\int_{1}^{2} \cos(1+x^2) dx$
- (d) $\int_0^1 \cos(x^2) dx$
- (e) $\int_{1}^{2} \cos(x^2) dx$

- 2. The **volume** of the solid obtained by rotating the region bounded by the curves $y = 2\sqrt{x}$, y = 0, x = 2 about the x-axis is
 - (a) $\frac{\pi}{2}$
 - (b) 3π
 - (c) $\frac{5\pi}{2}$
 - (d) 6π
 - (e) 8π

- 3. Using **three** rectangles and **midpoints**, the area under the graph of $f(x) = 3x x^2$ from x = 0 to x = 3 is approximately equal to
 - (a) 9
 - (b) $\frac{17}{4}$
 - (c) $\frac{8}{3}$
 - (d) $\frac{17}{2}$
 - (e) $\frac{19}{4}$

- 4. $\int_0^1 x(\sqrt[3]{x} + 3x^2 \sqrt{x}) \, dx =$
 - (a) $\frac{3}{7}$
 - (b) $\frac{8}{5}$
 - (c) $\frac{23}{21}$
 - (d) $\frac{21}{5}$
 - (e) $\frac{1}{2}$

$$5. \qquad \int \frac{6}{x(\ln x)^4} \, dx =$$

(a)
$$\frac{x}{(\ln x)^2} + C$$

(b)
$$\frac{1}{3(\ln x)^3} + C$$

(c)
$$\frac{-3}{(\ln x)^3} + C$$

$$(d) \quad \frac{6}{(\ln x)^2} + C$$

(e)
$$\frac{-2}{(\ln x)^3} + C$$

$$6. \qquad \int \left(\frac{1-x}{x}\right)^2 dx =$$

(a)
$$\frac{2}{x} + \ln|x| - x + C$$

(b)
$$-\frac{1}{x} - 2 \ln|x| + x + C$$

(c)
$$-\frac{1}{3}\left(\frac{1-x}{x}\right)^3 + C$$

(d)
$$-\frac{1}{x} + x + C$$

(e)
$$\frac{1}{x^2} + \frac{2}{x} + C$$

7.
$$\int \frac{\tan \theta}{\sec \theta (\sec \theta - \cos \theta)} d\theta =$$

- (a) $\cot \theta + \cos \theta + C$
- (b) $\ln|\sin\theta| + C$
- (c) $\ln|\sec\theta \cos\theta| + C$
- (d) $\sin \theta + \tan \theta + C$
- (e) $-\tan \theta + \ln |\sin \theta| + C$

8. If
$$F(x) = \int_{x}^{x^2} e^{t^2} dt$$
 then $F'(x) =$

- (a) $e^{x^4} e^{x^2}$
- (b) $2x e^{x^4} e^{x^2}$
- (c) $2e^{x^2} e^x$
- (d) $2e^{x^4} xe^{x^2}$
- (e) $e^{x^4-x^2}$

9. An equation for the **tangent line** to the curve $y = \int_x^{\sqrt{3}} \sqrt{1+t^2} dt$ at the point with x-coordinate $\sqrt{3}$ is given by

(a)
$$y = -2x + 2\sqrt{3}$$

(b)
$$y = -\sqrt{3}x + 2\sqrt{3}$$

(c)
$$y = 2x - 2\sqrt{3}$$

(d)
$$y = 3x - 3\sqrt{3}$$

(e)
$$y = \sqrt{3}x - 3$$

10. If $f(x) = \begin{cases} 2 + \sqrt{4 - x^2} & \text{if } x < 2 \\ |x - 4| & \text{if } x \ge 2 \end{cases}$, then $\int_{-2}^{4} f(x) dx =$

(a)
$$\pi - 6$$

(b)
$$6 + \frac{\pi}{2}$$

(c)
$$2\pi + 2$$

(d)
$$\pi - 2$$

(e)
$$2\pi + 10$$

11. Using n subintervals with **right endpoints**, we get

$$\int_{2}^{5} (x^{2} - 4) \, dx =$$

(a)
$$\lim_{n \to \infty} \left[\frac{12(n+1)}{n} + \frac{15(n+1)(2n+1)}{2n^2} \right]$$

(b)
$$\lim_{n \to \infty} \left[\frac{18(n+1)}{n} + \frac{9(n+1)(2n+1)}{2n^2} \right]$$

(c)
$$\lim_{n \to \infty} \left[\frac{9(n+1)}{2n} - \frac{9(n+1)(2n+1)}{2n^2} \right]$$

(d)
$$\lim_{n \to \infty} \left[\frac{18(n+1)}{n} + \frac{9(n+1)(2n+1)}{n^2} \right]$$

(e)
$$\lim_{n \to \infty} \left[\frac{9(n+1)(2n+1)}{n^2} - 4n \right]$$

12. The **area** of the region enclosed by the curves y = |x| and $y = x^2 - 2$ is

- (a) $\frac{15}{16}$
- (b) $\frac{11}{5}$
- (c) $\frac{17}{12}$
- (d) $\frac{25}{17}$
- (e) $\frac{20}{3}$

- 13. The **volume** of the solid obtained by rotating the region bounded by the curves y = x and $y = x^2$ about the line x = -1 is given by
 - (a) $\pi \int_0^1 [(x^2+1)^2 (x+1)^2] dx$
 - (b) $\pi \int_0^1 y y^2 \, dy$
 - (c) $\pi \int_0^1 [y (1+y)^2] dy$
 - (d) $\pi \int_0^1 [(1+\sqrt{y})^2 (1+y)^2] dy$
 - (e) $\pi \int_0^1 (\sqrt{y} y) dy$

- 14. $\int_{-1}^{1} \frac{\sin^3 t}{2 + \sin^2 t} \, dt =$
 - (a) $2 \ln(2 + \sin 1)$
 - (b) $-\ln(\sin 1)$
 - (c) $\ln \left(\frac{2 + \sin 1}{2 \sin 1} \right)$
 - (d) 0
 - (e) ln 2

15. If f is a continuous function and

$$2 \le f(x) \le 5 \quad \text{for} \quad 3 \le x \le 9,$$

then which one of the following statements is in general **FALSE**:

- (a) $\int_3^9 (3 f(x)) dx \ge -12$
- (b) $\int_{3}^{9} (1 2|f(x)|) dx \ge -10$
- (c) $\int_3^9 -2 f(x) dx \le -24$
- (d) $\int_{3}^{9} |f(x)| dx \ge 12$
- (e) $\int_3^9 (f(x))^2 dx \ge 24$

16. The base of a solid is the triangular region with vertices (0,0), (1,0), and (0,1). If the cross sections of the solid perpendicular to the x-axis are **semi-circles**, then the **volume** of the solid is

- (a) $\frac{\pi}{3}$
- (b) $\frac{\pi}{12}$
- (c) $\frac{\pi}{24}$
- (d) $\frac{\pi}{4}$
- (e) $\frac{\pi}{6}$

17. If
$$\int_{-5}^{7} f(x)dx = -17$$
, $\int_{-5}^{11} f(x) dx = 32$, and $\int_{8}^{7} f(x) dx = 5$, then $\int_{11}^{8} f(x) dx = 32$

- (a) 19
- (b) 44
- (c) -50
- (d) -54
- (e) -60

18. If
$$f(x) = x^{-1} \left[\cos \left(\frac{\pi}{4} \ln x \right) \right]^{-2} \left[4 + 5 \tan \left(\frac{\pi}{4} \ln x \right) \right]^{-1/2}$$
, then $\int_{1}^{e} f(x) dx =$

- (a) $\frac{30}{\pi}$
- (b) $\frac{8}{5\pi}$
- (c) 4
- (d) 4π
- (e) $\frac{6}{5\pi}$

$$19. \qquad \int x^3 \sqrt{x^2 + 1} \, dx =$$

(a)
$$\frac{1}{3}(x^2+1)^{3/2}\left(x^2-\frac{3}{5}\right)+C$$

(b)
$$\frac{1}{5}(x^2+1)^{3/2}\left(x^2-\frac{4}{3}\right)+C$$

(c)
$$\frac{1}{3}(x^2+1)^{3/2}\left(\frac{3}{5}x^2-3\right)+C$$

(d)
$$\frac{1}{5}(x^2+1)^{3/2}\left(x^2-\frac{2}{3}\right)+C$$

(e)
$$\frac{1}{5}(x^2+1)^5 + \frac{1}{3}(x^2+1)^3 + C$$

20. The velocity (in m/s) of a particle moving along a line is given by

$$v(t) = t^2 - 2$$

The **distance** traveled by the particle during the time interval $0 \le t \le 2$ is

(a)
$$\frac{8\sqrt{2}-4}{3}m$$

(b)
$$\frac{4\sqrt{2}+2}{3}m$$

(c)
$$\frac{5-3\sqrt{2}}{3}m$$

(d)
$$\frac{4+\sqrt{2}}{3}m$$

(e)
$$\frac{8-2\sqrt{2}}{3}m$$

1	a	b	c	d	е	f
2	a	b	С	d	е	f
3	a	b	С	d	е	f
4	a	b	С	d	е	f
5	a	b	С	d	е	f
6	a	b	С	d	е	f
7	a	b	С	d	е	f
8	a	b	$^{\mathrm{c}}$	d	e	f
9	a	b	\mathbf{c}	d	e	f
10	a	b	\mathbf{c}	d	e	f
11	a	b	c	d	е	f
12	a	b	\mathbf{c}	d	e	f
13	a	b	\mathbf{c}	d	е	f
14	a	b	\mathbf{c}	d	е	f
15	a	b	С	d	е	f
16	a	b	\mathbf{c}	d	е	f
17	a	b	\mathbf{c}	d	е	f
18	a	b	c	d	е	f
19	a	b	\mathbf{c}	d	е	f
20	a	b	c	d	е	f
21	a	b	\mathbf{c}	d	е	f
22	a	b	c	d	е	f
23	a	b	\mathbf{c}	d	е	f
24	a	b	$^{\mathrm{c}}$	d	e	f
25	a	b	\mathbf{c}	d	е	f
26	a	b	\mathbf{c}	d	е	f
27	a	b	c	d	е	f
28	a	b	c	d	е	f
29	a	b	c	d	е	f
30	a	b	c	d	е	f
31	a	b	c	d	е	f
32	a	b	c	d	е	f
33	a	b	c	d	е	f
34	a	b	c	d	е	f
35	a	b	\mathbf{c}	d	е	f

36	a	b	С	d	е	f
37	a	b	С	d	е	f
38	a	b	С	d	е	f
39	a	b	С	d	е	f
40	a	b	С	d	е	f
41	a	b	С	d	е	f
42	a	b	С	d	е	f
43	a	b	c	d	е	f
44	a	b	С	d	е	f
45	a	b	\mathbf{c}	d	е	f
46	a	b	С	d	е	f
47	a	b	c	d	е	f
48	a	b	С	d	е	f
49	a	b	С	d	е	f
50	a	b	С	d	е	f
51	a	b	С	d	е	f
52	a	b	С	d	е	f
53	a	b	c	d	е	f
54	a	b	c	d	е	f
55	a	b	c	d	е	f
56	a	b	c	d	е	f
57	a	b	С	d	е	f
58	a	b	С	d	е	f
59	a	b	С	d	е	f
60	a	b	С	d	е	f
61	a	b	С	d	е	f
62	a	b	С	d	е	f
63	a	b	С	d	е	f
64	a	b	С	d	е	f
65	a	b	С	d	е	f
66	a	b	c	d	е	f
67	a	b	c	d	е	f
68	a	b	c	d	е	f
69	a	b	$^{\mathrm{c}}$	d	е	f
70	a	b	С	d	е	f

King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

CODE 004

Math 102 Exam I Term 162 CODE 004

Wednesday 15/3/2017 Net Time Allowed: 120 minutes

Name:	
ID:	Sec:

Check that this exam has 20 questions.

Important Instructions:

- 1. All types of calculators, pagers or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

- 1. The **volume** of the solid obtained by rotating the region bounded by the curves $y=2\sqrt{x},\,y=0,\,x=2$ about the x-axis is
 - (a) 3π
 - (b) 8π
 - (c) $\frac{\pi}{2}$
 - (d) $\frac{5\pi}{2}$
 - (e) 6π

- 2. Using **three** rectangles and **midpoints**, the area under the graph of $f(x) = 3x x^2$ from x = 0 to x = 3 is approximately equal to
 - (a) $\frac{19}{4}$
 - (b) $\frac{17}{4}$
 - (c) $\frac{8}{3}$
 - (d) $\frac{17}{2}$
 - (e) 9

3.
$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{n} \cos \left(1 + \frac{i}{n}\right)^2 =$$

- (a) $\int_0^1 \cos(x^2) \, dx$
- (b) $\int_{1}^{2} \cos(1+x^2) dx$
- (c) $\int_0^1 \cos(1+x^2) dx$
- (d) $\int_{1}^{2} \cos(x^2) dx$
- (e) $\int_{1}^{2} \cos^2 x \, dx$

4.
$$\int_0^1 x(\sqrt[3]{x} + 3x^2 \sqrt{x}) \, dx =$$

- (a) $\frac{23}{21}$
- (b) $\frac{8}{5}$
- (c) $\frac{1}{2}$
- (d) $\frac{3}{7}$
- (e) $\frac{21}{5}$

$$5. \qquad \int \frac{6}{x(\ln x)^4} \, dx =$$

(a)
$$\frac{6}{(\ln x)^2} + C$$

(b)
$$\frac{-3}{(\ln x)^3} + C$$

(c)
$$\frac{1}{3(\ln x)^3} + C$$

(d)
$$\frac{-2}{(\ln x)^3} + C$$

(e)
$$\frac{x}{(\ln x)^2} + C$$

$$6. \qquad \int \left(\frac{1-x}{x}\right)^2 dx =$$

(a)
$$-\frac{1}{3} \left(\frac{1-x}{x} \right)^3 + C$$

(b)
$$\frac{2}{x} + \ln|x| - x + C$$

(c)
$$-\frac{1}{x} + x + C$$

(d)
$$-\frac{1}{x} - 2 \ln|x| + x + C$$

(e)
$$\frac{1}{x^2} + \frac{2}{x} + C$$

- 7. An equation for the **tangent line** to the curve $y = \int_{x}^{\sqrt{3}} \sqrt{1+t^2} dt$ at the point with x-coordinate $\sqrt{3}$ is given by
 - (a) $y = 3x 3\sqrt{3}$
 - (b) $y = 2x 2\sqrt{3}$
 - (c) $y = \sqrt{3}x 3$
 - (d) $y = -\sqrt{3}x + 2\sqrt{3}$
 - (e) $y = -2x + 2\sqrt{3}$

- 8. $\int \frac{\tan \theta}{\sec \theta (\sec \theta \cos \theta)} d\theta =$
 - (a) $\cot \theta + \cos \theta + C$
 - (b) $\ln|\sin\theta| + C$
 - (c) $\sin \theta + \tan \theta + C$
 - (d) $-\tan \theta + \ln |\sin \theta| + C$
 - (e) $\ln|\sec\theta \cos\theta| + C$

9. If
$$F(x) = \int_{x}^{x^2} e^{t^2} dt$$
 then $F'(x) =$

- (a) $e^{x^4} e^{x^2}$
- (b) $2e^{x^4} xe^{x^2}$
- (c) $2x e^{x^4} e^{x^2}$
- (d) $e^{x^4-x^2}$
- (e) $2e^{x^2} e^x$

10. If
$$f(x) = \begin{cases} 2 + \sqrt{4 - x^2} & \text{if } x < 2 \\ |x - 4| & \text{if } x \ge 2 \end{cases}$$
, then $\int_{-2}^{4} f(x) \, dx =$

- (a) $2\pi + 10$
- (b) $\pi 2$
- (c) $2\pi + 2$
- (d) $\pi 6$
- (e) $6 + \frac{\pi}{2}$

- 11. The **area** of the region enclosed by the curves y = |x| and $y = x^2 2$ is
 - (a) $\frac{15}{16}$
 - (b) $\frac{20}{3}$
 - (c) $\frac{25}{17}$
 - (d) $\frac{11}{5}$
 - (e) $\frac{17}{12}$

12. Using n subintervals with **right endpoints**, we get

$$\int_{2}^{5} (x^2 - 4) \, dx =$$

(a)
$$\lim_{n \to \infty} \left[\frac{9(n+1)}{2n} - \frac{9(n+1)(2n+1)}{2n^2} \right]$$

(b)
$$\lim_{n \to \infty} \left[\frac{12(n+1)}{n} + \frac{15(n+1)(2n+1)}{2n^2} \right]$$

(c)
$$\lim_{n \to \infty} \left[\frac{18(n+1)}{n} + \frac{9(n+1)(2n+1)}{n^2} \right]$$

(d)
$$\lim_{n \to \infty} \left[\frac{18(n+1)}{n} + \frac{9(n+1)(2n+1)}{2n^2} \right]$$

(e)
$$\lim_{n \to \infty} \left[\frac{9(n+1)(2n+1)}{n^2} - 4n \right]$$

13.
$$\int_{-1}^{1} \frac{\sin^3 t}{2 + \sin^2 t} \, dt =$$

- (a) $-\ln(\sin 1)$
- (b) ln 2
- (c) $2 \ln(2 + \sin 1)$
- (d) 0
- (e) $\ln \left(\frac{2 + \sin 1}{2 \sin 1} \right)$

14. The **volume** of the solid obtained by rotating the region bounded by the curves y = x and $y = x^2$ about the line x = -1 is given by

(a)
$$\pi \int_0^1 y - y^2 \, dy$$

(b)
$$\pi \int_0^1 [(x^2+1)^2-(x+1)^2] dx$$

(c)
$$\pi \int_0^1 [(1+\sqrt{y})^2 - (1+y)^2] dy$$

(d)
$$\pi \int_0^1 [y - (1+y)^2] dy$$

(e)
$$\pi \int_0^1 (\sqrt{y} - y) dy$$

$$15. \qquad \int x^3 \sqrt{x^2 + 1} \, dx =$$

(a)
$$\frac{1}{5}(x^2+1)^5 + \frac{1}{3}(x^2+1)^3 + C$$

(b)
$$\frac{1}{5}(x^2+1)^{3/2}\left(x^2-\frac{4}{3}\right)+C$$

(c)
$$\frac{1}{3}(x^2+1)^{3/2}\left(x^2-\frac{3}{5}\right)+C$$

(d)
$$\frac{1}{3}(x^2+1)^{3/2}\left(\frac{3}{5}x^2-3\right)+C$$

(e)
$$\frac{1}{5}(x^2+1)^{3/2}\left(x^2-\frac{2}{3}\right)+C$$

16. If
$$f(x) = x^{-1} \left[\cos \left(\frac{\pi}{4} \ln x \right) \right]^{-2} \left[4 + 5 \tan \left(\frac{\pi}{4} \ln x \right) \right]^{-1/2}$$
, then $\int_{1}^{e} f(x) dx =$

- (a) $\frac{30}{\pi}$
- (b) $\frac{6}{5\pi}$
- (c) 4π
- (d) 4
- (e) $\frac{8}{5\pi}$

- 17. The base of a solid is the triangular region with vertices (0,0), (1,0), and (0,1). If the cross sections of the solid perpendicular to the x-axis are **semi-circles**, then the **volume** of the solid is
 - (a) $\frac{\pi}{3}$
 - (b) $\frac{\pi}{4}$
 - (c) $\frac{\pi}{24}$
 - (d) $\frac{\pi}{12}$
 - (e) $\frac{\pi}{6}$

18. If f is a continuous function and

$$2 < f(x) < 5$$
 for $3 < x < 9$,

then which one of the following statements is in general **FALSE**:

- (a) $\int_{3}^{9} (3 f(x)) dx \ge -12$
- (b) $\int_3^9 -2 f(x) dx \le -24$
- (c) $\int_3^9 |f(x)| dx \ge 12$
- (d) $\int_3^9 (f(x))^2 dx \ge 24$
- (e) $\int_3^9 (1 2|f(x)|) dx \ge -10$

- 19. If $\int_{-5}^{7} f(x)dx = -17$, $\int_{-5}^{11} f(x) dx = 32$, and $\int_{8}^{7} f(x) dx = 5$, then $\int_{11}^{8} f(x) dx = 32$
 - (a) -60
 - (b) 19
 - (c) -54
 - (d) -50
 - (e) 44

20. The velocity (in m/s) of a particle moving along a line is given by

$$v(t) = t^2 - 2$$

The **distance** traveled by the particle during the time interval $0 \le t \le 2$ is

- (a) $\frac{8 2\sqrt{2}}{3} m$
- (b) $\frac{4\sqrt{2}+2}{3}m$
- (c) $\frac{4+\sqrt{2}}{3}m$
- (d) $\frac{8\sqrt{2}-4}{3}m$
- (e) $\frac{5 3\sqrt{2}}{3} m$

1	a	b	c	d	е	f
2	a	b	С	d	е	f
3	a	b	С	d	е	f
4	a	b	С	d	е	f
5	a	b	c	d	е	f
6	a	b	c	d	е	f
7	a	b	С	d	е	f
8	a	b	\mathbf{c}	d	e	f
9	a	b	\mathbf{c}	d	e	f
10	a	b	\mathbf{c}	d	e	f
11	a	b	\mathbf{c}	d	e	f
12	a	b	c	d	е	f
13	a	b	c	d	e	f
14	a	b	c	d	е	f
15	a	b	c	d	е	f
16	a	b	\mathbf{c}	d	e	f
17	a	b	\mathbf{c}	d	e	f
18	a	b	\mathbf{c}	d	e	f
19	a	b	\mathbf{c}	d	e	f
20	a	b	\mathbf{c}	d	e	f
21	a	b	\mathbf{c}	d	e	f
22	a	b	c	d	е	f
23	a	b	$^{\mathrm{c}}$	d	е	f
24	a	b	\mathbf{c}	d	e	f
25	a	b	\mathbf{c}	d	e	f
26	a	b	\mathbf{c}	d	e	f
27	a	b	\mathbf{c}	d	e	f
28	a	b	\mathbf{c}	d	e	f
29	a	b	\mathbf{c}	d	е	f
30	a	b	\mathbf{c}	d	e	f
31	a	b	\mathbf{c}	d	е	f
32	a	b	c	d	е	f
33	a	b	\mathbf{c}	d	е	f
34	a	b	\mathbf{c}	d	e	f
35	a	b	c	d	е	f

36	a	b	c	d	е	f
37	a	b	С	d	е	f
38	a	b	c	d	е	f
39	a	b	С	d	е	f
40	a	b	С	d	е	f
41	a	b	С	d	е	f
42	a	b	c	d	е	f
43	a	b	$^{\mathrm{c}}$	d	е	f
44	a	b	С	d	е	f
45	a	b	С	d	е	f
46	a	b	С	d	е	f
47	a	b	С	d	е	f
48	a	b	С	d	е	f
49	a	b	С	d	е	f
50	a	b	С	d	е	f
51	a	b	С	d	е	f
52	a	b	С	d	е	f
53	a	b	С	d	е	f
54	a	b	С	d	е	f
55	a	b	С	d	е	f
56	a	b	С	d	е	f
57	a	b	С	d	е	f
58	a	b	С	d	е	f
59	a	b	С	d	е	f
60	a	b	\mathbf{c}	d	е	f
61	a	b	c	d	е	f
62	a	b	c	d	е	f
63	a	b	c	d	е	f
64	a	b	c	d	е	f
65	a	b	С	d	е	f
66	a	b	c	d	е	f
67	a	b	c	d	е	f
68	a	b	c	d	е	f
69	a	b	\mathbf{c}	d	е	f
70	a	b	c	d	е	f

Q	MM	V1	V2	V3	V4
1	a	d	d	е	b
2	a	е	d	е	a
3	a	d	b	е	d
4	a	e	a	С	a
5	a	a	d	е	d
6	a	e	b	b	d
7	a	d	a	b	e
8	a	е	е	b	b
9	a	c	С	a	С
10	a	c	С	е	a
11	a	a	a	b	b
12	a	d	b	е	d
13	a	d	a	d	d
14	a	е	е	d	С
15	a	С	d	b	e
16	a	a	е	С	е
17	a	С	b	d	С
18	a	b	d	b	e
19	a	С	е	d	С
20	a	е	d	a	d

Answer Counts

V	a	b	c	d	e
1	1	4	2	7	6
2	4	4	2	6	4
3	6	3	3	5	3
4	3	7	1	7	2