King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

> Math 102 Exam I Term 122 Wednesday 27/02/2013 Net Time Allowed: 120 minutes

MASTER VERSION

Math 102-Term-122 (Exam I)

Page 1 of 10

MASTER

- 1. The average value of the function f(x) = |2x| 3 over the interval [-1, 2] is
 - (a) $\frac{-4}{3}$ (b) $\frac{1}{3}$ (c) 1 (d) -1 (e) $-\frac{1}{3}$

2.
$$\int_{0}^{\pi/8} \frac{\sin(2\theta)}{\cos^{2}(2\theta)} d\theta =$$
(a)
$$\frac{1}{2}(\sqrt{2}-1)$$
(b)
$$2\sqrt{2}-1$$
(c)
$$\sqrt{2}+1$$
(d)
$$\frac{\sqrt{2}}{2}+1$$
(e)
$$\frac{\sqrt{2}}{2}$$

3.
$$\int_0^{1/2} \frac{e^{\sin^{-1}x}}{\sqrt{1-x^2}} \, dx =$$

- (a) $e^{\pi/6} 1$
- (b) $e^{\pi/4} + 1$
- (c) $e^{\pi/4} 1$
- (d) $e^{\pi/3} + 1$
- (e) 2e 1

- 4. The length of the curve $y = \frac{2}{3}(x-2)^{3/2}$ from x = 2 to x = 5 is
 - (a) $\frac{14}{3}$ (b) $\frac{16}{3}$ (c) $\frac{13}{3}$ (d) $\frac{17}{3}$ (e) $\frac{11}{3}$

5.
$$\int_0^1 (1+x)\sqrt{1-x} \, dx =$$

(a) $\frac{14}{15}$ (b) $\frac{8}{15}$ (c) $\frac{3}{5}$ (d) $\frac{4}{3}$ (e) 1

6. Let
$$\int_{1}^{x^2} \frac{2f(\sqrt{t})}{t^2} dt = x^2 - 1$$
. If $x > 0$, then $f'(2) =$

- (a) 16
- (b) 18
- (c) 20
- (d) 22
- (e) 24

7.
$$\int_{\pi/4}^{\pi/3} (\tan\theta + \cot\theta)^2 d\theta =$$

(a)
$$\frac{2\sqrt{3}}{3}$$

(b) $\sqrt{3}$
(c) $1 + \frac{\pi}{12}$
(d) $2 - \frac{\pi}{12}$
(e) $1 + \sqrt{3}$

8. Let f be an integrable function on [-4,7]. If $\int_{-4}^{7} f(x) dx = 6$ and $\int_{1}^{7} (f(x) - 2) dx = -8$, then $\int_{-4}^{1} f(x) dx =$

- (a) 2
- (b) 1
- (c) 4
- (d) 3
- (e) 5

- 9. The area of the region enclosed by the curve $y^2 = -x$ and the line x + y + 2 = 0 is equal to
 - (a) $\frac{9}{2}$
 - (b) 3
 - (c) $\frac{10}{2}$
 - (d) $\frac{3}{2}$
 - (e) 2

- 10. The volume of the solid generated by rotating the region enclosed by the curve $y = 2\sqrt{x}$ and the lines y = 2 and x = 0 about the x-axis, is equal to
 - (a) 2π
 - (b) π
 - (c) $\frac{7\pi}{5}$
 - (d) $\frac{2\pi}{5}$ (e) $\frac{\pi}{5}$

- 11. The region enclosed by the curve $y = e^{x-1}$, and the lines x = 1, x = 3, and y = 0 is rotating about the x-axis, then the volume of the solid generated is equal to
 - (a) $\frac{\pi}{2}(e^4 1)$ (b) $\frac{\pi}{2}(e^4 + 2)$ (c) $\frac{\pi}{2}(e^2 - 2)$ (d) $\frac{\pi}{2}(e^4 - 3)$ (e) $\pi(e^6 - e^2)$

12.
$$\int_0^{e-1} \frac{1}{(1+t)(1+2\ln\sqrt{t+1})} dt =$$

- (a) ln 2
- (b) $e \ln 2$

(c)
$$\frac{1}{e} \ln 2$$

- (d) $e \ln 2$
- (e) $\ln 2 \frac{1}{e}$

- 13. If $F'(x) = \sin x \cos x$, then the net change in the function F(x) over the interval $0 \le x \le \frac{\pi}{2}$ is equal to
 - (a) 0
 - (b) 1
 - (c) $4\sqrt{2} 1$

(d)
$$\frac{\sqrt{2}}{2}$$

(e)
$$\frac{\sqrt{2}}{4}$$

14.
$$\int_{3\pi/4}^{\pi/4} \frac{\cos(2x)}{1+\sin^2(2x)} \, dx =$$

(a)
$$\frac{\pi}{4}$$

(b) $\frac{3\pi}{4}$
(c) $\frac{\pi}{2}$
(d) π
(e) $\frac{3\pi}{2}$

- 15. The area of the region enclosed by the curve $y = \pi \sin(2\pi x)$ and the *x*-axis between x = 0 and $x = \frac{3}{4}$ is equal to:
 - (a) $\frac{3}{2}$
 - (b) 2
 - (c) $\frac{5}{2}$
 - (d) $\frac{1}{2}$
 - (e) 3

- 16. The base of a solid is a triangular region bounded by the lines y = x, y = 1, and x = 0. If the cross-sections of the solid perpendicular to the y-axis are semi-circles with diameters running across the base of the solid, then the volume of the solid is equal to
 - (a) $\frac{\pi}{24}$ (b) $\frac{3\pi}{8}$ (c) $\frac{\pi}{16}$ (d) $\frac{\pi}{36}$ (e) $\frac{\pi}{4}$

17. Let *P* be a partition of the interval [0, 2], then the limit $\lim_{\|p\|\to 0} \sum_{k=1}^{n} \left[c_k + \sqrt{4 - c_k^2} \right] \bigtriangleup x_k =$

[Hint: You may use known areas]

- (a) $\pi + 2$
- (b) $\pi 1$
- (c) 2π
- (d) $4\pi + 2$
- (e) $\pi + 1$

18. The length of the curve $x = \frac{y^2}{2} - \frac{\ln y}{4}$ from y = 1 to y = e is

(a)
$$\frac{1}{2}e^2 - \frac{1}{4}$$

(b) $\frac{3}{4}e^2$
(c) $\frac{1}{2}e^2 - 2$
(d) e^2
(e) $\frac{1}{2}e^2 - 1$

19. The area in the first quadrant enclosed by the lines $y = 2x, y = \frac{1}{2}x$, and y = -x + 6 is equal to

- (a) 6
- (b) 8
- (c) 10
- (d) 12
- (e) 14

20. The region in the first quadrant enclosed by the parabolas $y = x^2$, $y = 2 - x^2$, and the y-axis is rotating about the line x = -1, then the volume of the solid generated is given by

(a) $\int_0^1 4\pi (1 + x - x^2 - x^3) dx$ (b) $\int_0^2 2\pi (1 + x - x^2 - x^3) dx$ (c) $\int_0^1 4\pi (1 - 2x - 2x^2 + x^3) dx$ (d) $\int_0^2 2\pi (1 - x - x^2 - x^3) dx$ (e) $\int_0^1 2\pi (4 - x^2 + 2x^4) dx$