King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

> Math 102 Exam I Summer 113 Tuesday 26/06/2012 Net Time Allowed: 120 minutes

MASTER VERSION

1.
$$\lim_{n \to \infty} \frac{1 + 4 + 9 + \ldots + n^2}{n^3} =$$
(a) $\frac{1}{3}$
(b) $\frac{1}{6}$
(c) $\frac{1}{2}$
(d) 1
(e) ∞

2.
$$\int_0^{\sqrt{2}} \sqrt{2 - x^2} dx =$$
 (Hint: interpret the integral as an area)

(a)
$$\frac{\pi}{2}$$

(b) $\frac{\pi}{4}$
(c) 2π
(d) π
(e) $\frac{\pi}{\sqrt{2}}$

Page 2 of 10

3. If the graph of f is the one shown below, then $\int_0^6 f(x) dx =$

4. If
$$\int_{1}^{3} f(x)dx = 2$$
 and $\int_{5}^{1} f(x)dx = 7$, then $\int_{5}^{3} f(x)dx =$

- (a) 9
- (b) -5
- (c) 7
- (d) 5
- (e) -9

$$5. \quad \int_0^{\ln 2} e^{x-2} dx =$$

(a)
$$\frac{1}{e^2}$$

(b) e^2
(c) 0

- (d) 1
- (e) *e*

6. If
$$\int_{1}^{x} \frac{2f(t)}{t^2} dt = x^2 - 1$$
, then $f(2) =$

- (a) 8
- (b) 1
- (c) 4
- (d) 9
- (e) 16

7. If
$$H(x) = \int_{\sqrt{x}}^{x^3} e^{u^2} du$$
 then $H'(1) + 3H(1) =$

(a)
$$\frac{5}{2}e$$

(b) $\frac{3}{2}$
(c) $\frac{5}{2}e + 3$
(d) $-\frac{2}{5}e$
(e) 0

8. The area of the region enclosed by the two curves $x = y^2$ and $x = 2y^4 - y^2$ is

- 9. The area of the region enclosed by the curves $y = \sec^2 x$, y = 0, $x = -\frac{\pi}{4}$, and $x = \frac{\pi}{4}$ is
 - (a) 2
 - (b) 4
 - (c) 8
 - (d) 1
 - (e) 0

10. The volume of the solid generated by revolving the region enclosed by the triangle with vertices (1,0), (2,1) and (1,1)about the *y*-axis is:

(a)
$$\frac{4}{3}\pi$$

(b) $\frac{3}{4}\pi$
(c) π
(d) $\frac{2}{3}\pi$
(e) $\frac{3}{2}\pi$

- 11. If the cross-sectional area of a solid is $A(x) = \frac{2x}{(x^2+1)^2}$, then the volume of this solid between x = 0 and x = 1 is:
 - (a) $\frac{1}{2}$ (b) $\frac{1}{4}$ (c) $\frac{1}{6}$ (d) $\frac{1}{5}$ (e) $\frac{1}{3}$

12. If
$$f(2) = 2$$
 and $\int_{1}^{2} f'(x) dx = 3$, then $f(1) =$

- (a) -1
- (b) 1
- (c) 2
- (d) 5
- (e) -2

- 13. A particle moves along a line so that its velocity at time t is $v(t) = t^2 3t + 2$ (measured in meters(m) per second(s)). Find the total distance traveled during the period $1 \le t \le 3$
 - (a) 1m
 - (b) 2 m
 - (c) 3/2 m
 - (d) 1/2 m
 - (e) 2/3 m

14.
$$\int_0^{\pi} (-\cos x + |\cos x|) dx =$$

- (a) 2
- (b) 0
- (c) -1
- (d) 1
- (e) $\pi/2$

15.
$$\int \frac{(t+1)^2 - 1}{t^4} dt =$$

(a)
$$-\frac{1}{t} - \frac{1}{t^2} + C$$

(b) $\frac{1}{t^2} + \frac{2}{t^3} + C$
(c) $-\frac{1}{t} + \frac{2}{t^2} - \frac{1}{t^3} + C$
(d) $\frac{1}{t} - \frac{2}{t^2} + C$
(e) $\ln|t| + \frac{1}{t} + \frac{1}{t^2} + C$

16.
$$\int_0^{\pi/2} (\sin\theta + \cos\theta)^2 \,\sin\theta d\theta =$$

(a)
$$\frac{5}{3}$$

(b) $\frac{2}{3}$
(c) $\frac{1}{2}$
(d) $\frac{3}{5}$
(e) $\frac{1}{3}$

$$17. \quad \int \frac{3x}{\sqrt{2x+1}} dx =$$

(a)
$$(x-1)\sqrt{2x+1} + C$$

(b) $(2x+1)\sqrt{x-1} + C$
(c) $3(x+1)\sqrt{2x-1} + C$

(d)
$$3(1-x)\sqrt{2x-1} + C$$

(e)
$$3\sqrt{1-2x}(1-x) + C$$

18.
$$\int_{0}^{\ln(2)} \frac{e^{x}}{(3+2e^{x})^{2}} dx =$$

(a) $\frac{1}{35}$
(b) $-\frac{1}{35}$

(c)
$$\frac{7}{5}$$

(d) $\frac{5}{7}$
(e) $-\frac{1}{15}$

19. The area of the region in the first quadrant that is bounded above by $y = \sqrt{x}$ and below by the x-axis and the line y = x - 2 is given by the integral

(a)
$$\int_{0}^{2} (y+2-y^{2}) dy$$

(b) $\int_{1}^{4} (\sqrt{x}-x+2) dx$
(c) $\int_{0}^{4} (\sqrt{x}-x+2) dx$
(d) $\int_{1}^{4} (y-2-y^{2}) dy$
(e) $\int_{0}^{4} (2y-y^{2}) dy$

20. The area of the region between x-axis and the graph of $f(x) = x^3 - x^2 - 2x; \ 0 \le x \le 2$

(a)
$$\frac{8}{3}$$

(b) $-\frac{8}{3}$
(c) $\frac{32}{3}$
(d) $\frac{16}{3}$
(e) $\frac{4}{3}$